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Abstract

Identity Based Broadcast Encryption Scheme (IBBE) allow the center to transmit

data over broadcast channel to the large number of users such that only selected

subset of privileged user can decrypt the information. Center encrypt the message

by using identity of user so the only privileged users can decrypt it. In this thesis,

we review the IBBE scheme introduced by Ming and Wang. They proposed IBBE

with group of prime order. Their construction is based on bilinear mapping.

Also, they use dual pairing vector space technique in prime order groups. They

achieve constant size private key, ciphertext and system parameters. We mainly

focused on the implementation of Ming and Wang’s Scheme using group of points

of elliptic curve. Due to small key size, elliptic curve cryptography (ECC) has

gained considerable importance in recent years. Another reason for using ECC

is the weil pairing which is considered to be good candidate of bilinear mapping.

Using a suitable elliptic curve and weil pairing we constructed two toy examples

for the illustration of our IBBE scheme based on ECC. The algorithms for various

computations related to points on an elliptic curve, programs implemented in

computer algebra system ApCoCoA.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract viii

List of Figures xi

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Identity Based Encryption Scheme . . . . . . . . . . . . . . . . . . 2

1.3 Identity Based Broadcast Encryption Scheme . . . . . . . . . . . . 3

1.4 Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

2.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Symmetric Key Cryptography . . . . . . . . . . . . . . . . . 7

2.1.2 Public Key Cryptography . . . . . . . . . . . . . . . . . . . 8

2.2 Key Management Issues . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Public Announcement . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Public Available Directory . . . . . . . . . . . . . . . . . . . 9

2.2.3 Public Key Authority . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Public Key Certificate . . . . . . . . . . . . . . . . . . . . . 12

2.2.4.1 Drawbacks of Certificate Authority . . . . . . . . . 13

2.3 Introduction to Identity Based Encryption Scheme . . . . . . . . . 14

2.3.1 Identity Based Encryption Scheme . . . . . . . . . . . . . . 16

ix



x

2.3.2 Identity Based Broadcast Encryption Scheme . . . . . . . . 18

2.4 Cryptanalysis Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Bilinear Mapping . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Weil Pairing on Elliptic Curve 30

3.1 Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Addition of Points on Elliptic Curve: . . . . . . . . . . . . . 32

3.1.2 Elliptic Curve over finite field . . . . . . . . . . . . . . . . . 34

3.1.3 Scalar multiplication and order of point . . . . . . . . . . . . 39

3.1.4 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Weil pairing on elliptic curve . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Properties of Weil Pairing . . . . . . . . . . . . . . . . . . . 44

3.2.2 Miller’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Modified Weil Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Identity Based Broadcast Encryption Scheme 59

4.1 Broadcast Encryption Scheme . . . . . . . . . . . . . . . . . . . . . 59

4.2 Identity Based Broadcast Encryption Scheme . . . . . . . . . . . . 60

4.3 IBBE with group of prime order . . . . . . . . . . . . . . . . . . . . 61

4.4 Construction of IBBE Scheme . . . . . . . . . . . . . . . . . . . . . 69

4.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Chosen Ciphertext Attack . . . . . . . . . . . . . . . . . . . 74

4.5.2 Chosen Plaintext Attack . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Analysis and Conclusion . . . . . . . . . . . . . . . . . . . . 80

5 Implementation of Identity Based Broadcast
Encryption Scheme using Weil pairing 83

5.1 Our construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Weil Pairing 117

A.1 ApCoCoA Code for Weil Pairing . . . . . . . . . . . . . . . . . . . 117

B Modified Weil Pairing 123

B.1 ApCoCoA Code for Modified Weil Pairing . . . . . . . . . . . . . . 123

Bibliography 131



List of Figures

2.1 Symmetric Key Cryptography [14] . . . . . . . . . . . . . . . . . . . 7

2.2 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Public Announcement [48] . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Public Available Directory [48] . . . . . . . . . . . . . . . . . . . . . 10

2.5 Public Key Authority [48] . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Public Key Certificate [48] . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Public Key Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Public key certificate . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Identity Based Encryption Scheme . . . . . . . . . . . . . . . . . . 16

2.10 Identity Based encryption Scheme . . . . . . . . . . . . . . . . . . 17

3.1 Elliptic Curve: y2 = x3 + 1 . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Elliptic Curve: y2 = x3 − x . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Elliptic Curve: y2 = x3 + 1 over Z11 . . . . . . . . . . . . . . . . 35

xi



List of Tables

2.1 Properties of Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Finite field under addition in mod 11 . . . . . . . . . . . . . . . . 22

2.3 Finite field under multiplication in mod 11 . . . . . . . . . . . . . 22

2.4 List of additive and multiplicative Inverses . . . . . . . . . . . . . . 22

3.1 Elliptic Curve over Z11 . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Addition Cayley Table of Elliptic Curve over F11 . . . . . . . . . . . 38

xii



Abbreviations

IBE Identity Based Encryption

IBBE Identity Based Broadcast Encryption

PKC Public Key Cryptography

PKI Public Key Infrastructure

PKA Public Key Authority

CA Certificate Authority

PKG Private Key Generator

xiii



Symbols

M Plaintext or Message

C Ciphertext

E Encryption Algorithm

D Decryption Algorithm

PR Private Key/ Secret Key

ID Recipient’s Identity

C ′ Ciphertext Space

M′ Message Space

A Adversary

PP Public parameters

G Group

Z Set of integers

R Set of real numbers

Q Rational numbers

C Complex numbers

V Vector space

G∗ Multiplicative Group

p, q Prime number

Fp,Zp Finite field of order prime p

Fpk Finite field extension

K Master Key

EF(a, b) Elliptic Curve Over field F and parameters a, b

O Point at Infinity

xiv



xv

A, B, C Points on elliptic curve



Chapter 1

Introduction

1.1 Cryptography

The security of communication remained a big problem from very beginning. Ro-

man knew some cryptographic methods and used the Shift Cipher or Caesar Cipher

[15] while communicating with each other. As the time passed, new methods in

cryptography were developed that provided more security. Cryptography [48] is

the study of transmitting message in such form so that no third person can read

and process it. It is the technique that uses mathematical functions for securing

the data or information from adversaries. The original message known as plain-

text is converted into codded message (ciphertext) via the encryption algorithm

for transmitting it to the public network. The ciphertext is then converted back

to plaintext by the receiver or an authorized person via the decryption algorithm.

Both sender and receiver use a secret information (known only to sender and re-

ceiver) for encryption and decryption algorithms. this secret information known

as a key. The entire process is called cryptosystem. The security of a cryptosystem

relies only on the security of the key.

Depending on the key, the cryptographic scheme are divided in two main cate-

gories, namely Symmetric key cryptography and Asymmetric key cryptography.

1
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In symmetric key encryption [28], only one key is used for both encryption and

decryption algorithm that is only known to sender and receiver. Examples of such

scheme include DES [7] and AES [38]. The key distribution is main problem in

this method. When we have thousands of users to communicate with each other

then the distribution of key among all the participants becomes a serious issue.

To solve this problem, Diffie Helman [19] proposed the idea of Asymmetric key

cryptography which is also known as Public key cryptography (PKC) [48]. In

PKC, recipient has two types of keys for communication one is public key that is

made public and the other is private key that is kept secret. For example, RSA

[42], ElGamal [47].

There are some issues regarding use of PKC, the issue is how to trust the public

key. In order to solve this issue an authority is maintained in which both recipients

(sender and receiver) can trust, is called certificate authority (CA) [30]. In certifi-

cate system, both recipients submit their public keys to authority and authority

verifies their keys and issues some certificates. But management of certificates is

complex and cumbersome. The problem associated with PKC is solved by Shamir

[45] to introduced the idea of identity based encryption scheme.

1.2 Identity Based Encryption Scheme

Identity based encryption scheme (IBE) is a type of public key cryptography, in

which public key of recipient can be an arbitrary string that may be his email

address and for private key, the recipient authenticates himself from third party

known as Private Key Generator (PKG), whenever recipient first connects to the

system. The direct derivation of public key eliminates the need of certificate and

reduces the complexity in the system.

In 1984 Shamir [45] introduced the notion of IBE, but he was unable to construct

practical scheme of IBE. There have been several proposals for IBE see [18, 35,

49, 50]. But none of these are fully acceptable. Some schemes take a lot of time
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in generating the private key by private key generator (PKG). The first successful

scheme was presented by Boneh and Franklin [10] in 2001. From that time, the

IBE is currently active in research area. One prominent application of IBE is its

use in broadcast initiated by Fiat and Naor [22].

1.3 Identity Based Broadcast Encryption Scheme

The term broadcast refers to the system in which message is transmitted to multi-

ple users. There is only one sender called a centre or broadcaster and it transmits

message to multiple receiver called as subscribers or privileged users. No one from

the outside of the set of receiver is able to decrypt the message. FM radio is an

example of broadcasting.

Identity based broadcast encryption scheme (IBBE) is generalization of IBE scheme.

In IBE there is only one sender and one receiver but in IBBE there is only one

sender (known as Center) and set of receivers. Centre encrypts the message by

using receiver’s identity and send it to corresponding receiver. The trusted third

party Private key generator (PKG) generates private key of each receiver in the

set. The corresponding receiver can decrypt the message by using their private

keys.

The concept of broadcast encryption (BE) was first introduced by Fait and Noar

[22], which is based on symmetric key encryption. Later, the first successful scheme

on BE [20] was introduced that depends upon the public key encryption scheme.

After that, there have been many proposals for BE scheme see [5, 21, 25, 39]. Then,

there was a proposal on Identity Based Broadcast Encryption Scheme(IBBE) in

2007 see [44]. For several other proposals on IBBE we refer to [6, 11, 17].
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1.4 Current Research

In this research, we focused on IBBE scheme introduced by Ming and Wang [37].

They proposed IBBE with group of prime order. Their construction is based on

bilinear mapping. Also, they use dual pairing vector space [16] technique as a tool

in their scheme. They scheme achieve constant size of system parameter, private

key and ciphertext. Furthermore, they use the dual system encryption [52] for the

sake of security.

Due to small key size, elliptic curve cryptography (ECC) has gained considerable

importance in recent years[51]. We mainly focused on the implementation of

Ming and Wang’s Scheme [37] using group of points of elliptic curve [51]. Another

reason for using ECC is the weil pairing [34] which is considered to be good

candidate of bilinear mapping [46]. Using a suitable elliptic curve and weil pairing

we constructed two toy examples for the illustration of our IBBE scheme based

on ECC. The algorithms for various computations related to points on an elliptic

curve, programs implemented in computer algebra system ApCoCoA [1].

1.5 Thesis layout

Our thesis is organised as follow:

• In Chapter 2, we discussed identity based encryption scheme (IBE) in de-

tail. We started with basic definitions for cryptography and issues related to

its key management. Then we showed the drawbacks of certificate authority

over identity based encryption scheme.

• In Chapter 3, we presented the examples of bilinear pairing. For that pur-

pose we choose the elliptic curve and recall its basic definitions and proper-

ties. Furthermore, we described the concept of weil pairing and its modified

form. We implemented weil pairing and modified form by using ApCoCoA

tool [1].
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• In Chapter 4, we discussed the generalized form of IBE called Identity

Based Broadcast Encryption Scheme. We presented the review of IBBE

scheme on the group of prime order introduced by Ming and Wang[37].

• In Chapter 5, we implemented Ming and Wang scheme [37] using group

of points on an elliptic curve and weil pairing [34], which is good example

of bilinear mapping on elliptic curve groups. The modified scheme [37] is

illustrated by toy examples.



Chapter 2

Preliminaries

In this chapter, we discuss new scheme known as identity based encryption scheme

introduced by Shamir [45]. First of all we will define cryptography and issues

related to its key management. Furthermore, we will highlight the drawbacks of

certificate authority over identity based encryption scheme. We also recall some

basic definitions from algebra that will be using throughout in this thesis.

2.1 Cryptography

Cryptography is the branch of cryptology1, in which communication take place in

the secure fashion in such a way that no third party can read or change the in-

formation. The sender converts the original message or data (known as plaintext)

into coded or scrambled message (called the ciphertext). The process of convert-

ing the plaintext into ciphertext is called encryption and process of converting

ciphertext back into plaintext is called decryption. On the basis of keys used,

cryptography is divided into two categories.

• Symmetric Key Cryptography

• Public Key Cryptography

1Cryptology is the science of secret communication

6
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2.1.1 Symmetric Key Cryptography

Symmetric key cryptography [28] is also called the secret key cryptography. It was

the only technique that is used for transmitting messages before the development of

public key cryptography. In this method, only one key is used for both encryption

and decryption. A typical symmetric key cryptography model is shown in Figure

2.1, in which both sender and receiver are using a common key K for encryption

and decryption which is not known to adversary (attacker).

Figure 2.1: Symmetric Key Cryptography [14]

The drawbacks of symmetric key cryptography are as follow:

1. Key sharing: If there are n number of people communicating with each

other, then key distribution is the problem. If one person discloses the key

then the whole communication will be compromised.

2. Authentication: One of the main problem is authentication, if Alice and

Bob communicate with each other then how can Alice prove that the message

has arrived from Bob.
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2.1.2 Public Key Cryptography

To solve this issue with symmetric key cryptography, Diffie-Welman [19] proposed

the idea of public key cryptography in 1976. Their concept is based on one-way

trapdoor function for exchanging the key between two parties. Public key cryp-

tography [48] (PKC) allows the communicant to make the encryption key that is

make available for all and decryption keys are kept hidden.

The development of PKC is the greatest achievement in the history of cryptogra-

phy. From earliest to modern time, virtually all cryptosystems worked on permu-

tation and substitution. Moreover, the public key crptosystem based on mathe-

matical function instead of substitution and permutation. Generally, In public key

cryptography, encryption and decryption is performed by two different keys one

is a public key and the other is a private key. It is likewise known as Asymmetric

Encryption. The public key encryption scheme uses six main elements as shown

in Figure 2.2. The sender encrypts the plaintext M by using receiver’s public key

PU and an encryption algorithm E to get the ciphertext C. Then receiver uses

his private key PR (that is only known to him) and decrypts ciphertext using

corresponding decryption algorithm D. Thus,

C = E(PU,M) (2.1)

M = D(PR,C) (2.2)

2.2 Key Management Issues

In PKC, the distribution of public key is the main problem regarding the key

management. Many techniques have been proposed for distribution of public key

encryption. Some are as follow.

• Public Announcement

• Public Available Directory
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Figure 2.2: Public Key Cryptography

• Public key Authority

• Public Key Certificate

2.2.1 Public Announcement

One of the main problem faced by public key encryption scheme is that the public

key should be available to everyone. There are algorithms used PGP (Pretty Good

Privacy) [26] in which any recipient, sends its public key to other recipients via

email or make public announcement [48] as shown in Figure 2.3

One of the major weaknesses regarding public announcement is forgery. Any

person could claim to be user A and send his public key to B. In this way forger

is able to read all encrypted messages.

2.2.2 Public Available Directory

Greater security can be attained by maintaining public available directory [48].

The trusted authority or system would be responsible for maintenance and distri-

bution of public keys as shown Figure 2.4. Following are the key points of this

system.
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Figure 2.3: Public Announcement [48]

1. The authority maintains the record of the name and the public key of each

recipient.

2. Any participant can registers his public key with authority. Registration

would be in the form of secure communication.

3. If the private key is compromised, then participant can replace his existing

key with new one at any time.

4. The participant can access the directory electronically. For this purpose, it

is mandatory for participants to communicate with authority securely.

Figure 2.4: Public Available Directory [48]
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2.2.3 Public Key Authority

Greater security can be achieved by tightening control over the central authority

or directory. In this scheme [4], the public key authority, is employed to maintain

the directory of public key of all recipients. Therefore, all participants reliably

know the public key from central authority, with only authority knowing their

corresponding private key. The following are steps as presented in Figure 2.5.

1. A sends time stamped request to central authority for current public key of

B

2. Authority encrypt message with his private key (PRauth). The message of

authority contains the B’s public key PUb, original request and time stamped

as in equation 2.3. So, in this wayA can verify that this is not the old message

containing B’s public key.

E(PRauth, [PUb||Request||Time]) (2.3)

3. A store B’s public key and uses it to encrypt the message that contain A’s

identity (IDA) and nonce (N1) generated by A as describe in 2.4

E(PUb, [IDa||N1]) (2.4)

4. The same procedure is repeated by B for obtaining A’s public key (PUa) as

described in (1) and (2).

5. When B sends a message to A he encrypts message with A’s public key

(PUa), and with random number (N1) this can be used to verify the original

message generated by A and another random number (N2) generated by B

as described in equation 2.5

E(PUa, [N1||N2]) (2.5)

6. A returns the random number N2 by using B’s public key PUb to ensure

that the original message is sent by B.
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Figure 2.5: Public Key Authority [48]

2.2.4 Public Key Certificate

Although, public key authority (PKA) is an efficient scheme, but it has some

drawbacks. The public key authority could be a greater threat to a system, because

user must contact with authority for the public key of other users that it wishes

to contact. If some adversary had broken the public key authority, then the whole

system will be compromised. Even without breaking the public key authority,

some imprisonment is also possible by tampering the record of directory that

is maintained by the public key authority. Furthermore, the use of public key

authority frequently needs a large and complex system and it is really difficult to

update such a system securely.

Therefore, the concept of public key certificate (PKC) had been introduced by

Felder [30] to use certificate for communication without contacting the public key

authority. The certificate is the signed message that consists of a public key of

owner plus an identity of key owner and this whole blog is signed by a third party.

Typically, this third party is certificate authority. Note that Figure 2.6 shows the

certificate scheme, in which both recipients A and B supply their public keys PU

to certificate authority and requesting for certificate. Certificate authority (CA)

issues certificate for both recipients by using their private keys PR. So, A may

pass their certificate to B, and B reads and verifies it by using authority’s public
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key PRauth and certificate CA.

There are some benefits of certification which are stated as under:

1. Any participant can read a certificate and determine the name and pubic

key of certificate’s owner.

2. Any participant can verify the certificate that is created by Certificate.

3. Only certificate authority can create, modify and manage the certificate.

4. The participant can also verify the time period of every certificate.

Figure 2.6: Public Key Certificate [48]

2.2.4.1 Drawbacks of Certificate Authority

Although, the public key certificate [2] is a very efficient scheme, but it has some

drawbacks.

1. When user A wants to communicate with user B, both recipients need a

certificate in order to communicate with each other. For offline operations

a certificate is required in order to communicate with each other. So for

that purpose large scale directory is needed for managing the certificates for

offline use.

2. Certificates are large and complex structure so it is hard to update such a

system securely.

3. Since the certificate keeps all public and private keys therefore these are large

and very expensive schemes.
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4. The authority does not give warning when it changes the certificate.

5. A user blindly trusts on certificate authority, if some third party generates

the fraudulent certificate and gains access to someone’s personal computer.

So, in this way certificate authority does not give warning when any site uses

the fraudulent certificate.

6. In PKI (Public Key Infrastructure) before the communication takes place

the system must register its encryption and signature key to CA, then CA

issues the certificate for the proof of its identity. Then this certificate is used

by recipient for secure communication (Figure 2.7). Therefore, this method

is also time consuming.

Figure 2.7: Public Key Infrastructure

2.3 Introduction to Identity Based Encryption

Scheme

To solve the certificate management system, Shamir [45] introduced a new scheme

called as Identity Based Encryption Scheme (IBE) in 1984. IBE is a very efficient

scheme and currently active in research area of cryptography. This scheme uses an

arbitrary string such as a user’s identity, email address or IP address and derives
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the public key from it. The direct derivation of public key eliminates the role of

the certificate. Only private keys are generated from trusted third party also called

Private Key Generator (PKG). So, in this way large directories are not required

for managing public keys of users. In IBE, the private key authority exists only,

it does not need to be online, its action replaces with mathematical pairing. Note

that in Figure 2.8 when Alice send message to Bob she must contact to certificate

authority for Bob’s certificate CA look up the Bob’s certificate from certificate

server and send certificate to Alice. From certificate, Alice uses the public key

of Bob, PUBob, and apply the encryption by using PUBob. When Bob receives

encrypted message he sends his public key to CA and receives the certificate that

include his private key. Bob decrypt the message by using his private key. Where,

in Figure 2.9 shows that IBE does not need certificate server for keeping the record

of recipient’s public key. No certificate look up required. IBE need only the private

key generator for deriving the private keys by using recipient’s identity.

Figure 2.8: Public key certificate
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Figure 2.9: Identity Based Encryption Scheme

2.3.1 Identity Based Encryption Scheme

As discussed in previous section, identity based encryption scheme (IBE) was

first proposed by Shamir [45] in 1984. In this scheme, the pairs of users can

communicate and verify each other without sharing their public and private keys,

without keeping key directories and without taking the services of third parties.

In IBE, the third party is used to generate the private keys in the shape of smart

cards when users first connect the network.

IBE scheme is based on public key cryptosytem, but holds some extra key points.

Instead of generating the random public keys by using the help of a third party,

IBE scheme uses any combination of a user’s name, IP address, telephone or office

number etc. as a public key. IBE scheme resembles the mail services: if one user

knows someone’s e-mail address then he will be able to communicate with that

user.

Identity based encryption scheme works as follows:

1. User A wants to communicate with B, he signs it with his secret key in

his smart card. He encrypt the message by using B’s identity (B’s name,

address etc.) and sends it to B.
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2. When B receives the encrypted message, he contacts to third party for ob-

taining private key (PRb).

3. B decrypt the message by using his (PRb) in smart card or verify the message

by user’s A identity

Here the third party or key generation centre is the trusted party that generates

the secret keys of all users. Centre knows some secret information (such as fac-

torization of large numbers). The secret key is issued in the shape of smart cards

to all users who join the mesh. The smart card contains a microprocessor, RAM,

ROM that contains secret key and the program that contains the message encryp-

tion and decryption algorithm. The query is how user can secure his smart card?

The user must secure his smart card by using password system or memorizing the

part of the key.

The Figure 2.10 show the system of IBE. Shamir’s IBE consists of four algorithms.

Figure 2.10: Identity Based encryption Scheme

1. Setup: The setup is the component of a private key generator (PKG). PKG

generates the master key K and public parameter PP . Where master key is

kept secret. Public parameter contains the information about message space

M′ and ciphertext space C ′
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2. Extract: The PKG runs this extract algorithm, makes session keys or pri-

vate key for user using his master key and user’s identity (ID). This algo-

rithm accepts the identity (ID) of user and master key K generates private

key (SID) of corresponding identity (ID).

3. Encrypt: This algorithm accepts identity (ID) and message as input and

produce ciphertext as output.

C = E(M, ID)

4. Decrypt: This algorithm takes ciphertext (C) and private key (SID) as

input and returns messages.

M = D(C, SID)

There have been several proposals for IBE see [18, 35, 49, 50], but none of these are

fully acceptable. Some solutions take a lot of time in generating the private key

from private key generation (PKG). The first successful scheme was presented by

Boneh and Franklin [10] in 2001. Their scheme is based on bilinear maps defined

on prime order groups. They used Weil pairing on elliptic curves as an example

such map.

2.3.2 Identity Based Broadcast Encryption Scheme

Identity based broadcast encryption scheme (IBBE) is the generalized form of

IBE scheme. In this scheme there is only one sender and having multiple receivers.

Sender is called centre or broadcaster and receiver is called subscriber. The scheme

was first introduced by Fiat and Naor [22], in which broadcaster encrypt message

by using the set of identities and which is decrypted by the only subscriber. The

detailed description is given in Chapter 4.
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2.4 Cryptanalysis Attacks

The cryptanalysis is branch of cryptology in which we study ciphers, ciphertext

and cryptosystem and find weakness in them. It is process of deciphering the

ciphertext without the knowledge of secret key. Any attempt to recover the secret

key or break the ciphertext is called an Cryptanalysis attacks. Their are many

cryptanalysis attacks but we focus on two attacks chosen plaintext attack and

chosen ciphertext attack.

• Chosen Plaintext Attack: In Chosen Plaintext Attack [12] the adversary

can choose the plaintext instead of choosing the big block of text he choose

the smaller block and gets its corresponding ciphertext. His goal is to break

the secret ciphertext or recover the the secret key.

• Chosen ciphertext attack: In Chosen-ciphertext attack [12] the adversary

can choose ciphertext and can predict the corresponding plaintext. He has

an ability to make the decryption of ciphertext and then regenerate the

resulting plaintext from system. In this way he can analyze the secret key.

2.5 Mathematical Background

Before details on IBBE scheme, we first recall some definition from algebra that

will be used through the thesis.

Definition 2.5.1 (Groups)

The group [43] G denoted by (G, ∗) is the set of element under the binary oper-

ation * that satisfies the following properties:

1. Closure: For all x, y ∈ G, x ∗ y ∈ G

2. Associative: For all x, y, z ∈ G satisfies (x ∗ y) ∗ z = x ∗ (y ∗ z)

3. Identity: There exist an element i ∈ G that satisfies x∗ i = i∗x = x ∀x ∈

G. i is called the identity of G.
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4. Inverse: For each element x ∈ G ∃ x′ ∈ G the satisfies x ∗ x′ = x′ ∗ x = i.

Where i is the identity element of G

Example 2.5.2 Following are the examples of groups.

1. Set of integers Z, real number R, rational number Q, complex number C are

all group under binary operation addition +.

2. Set of real numbers R \ {0}, rational number Q \ {0} and complex number

C \ {0} all group under binary operation multiplication ×.

3. Let Zm = {0, 1, 2, ...m − 1} and m > 0 and m ∈ Z is group under addition

x ∗ y = x + y where x + y < m. The binary operation + is called addition

modulo m.

4. Set of integers Z does not form a group under multiplication because multi-

plicative inverse does not exist ( Inverse of 2 is 1
2

but 1
2
/∈ Z)

Definition 2.5.3 (Abelian Group)

The group G is said to be abelian group [43] if it satisfies commutative law i.e. for

all x, y ∈ G we have x ∗ y = y ∗ x.

Example 2.5.4 Following are the example of abelian groups.

1. Sets Z, R, C, Q are abelian group under addition.

2. Sets R \ {0} , Q \ {0} , C \ {0} form abelian groups w.r.t multiplication.

3. General Linear Group is defined asGL(m) = {A ∈M(m,m)|det(A) 6= 0}

where M(m,m) is matrix of order m×m is a group under multiplication. It

is not an abelian group because matrix multiplication is not commutative.

Definition 2.5.5 (Generator)

The generator g is a group element that is capable to generate all group elements.

Definition 2.5.6 (Cyclic Group)

The finite group G of order n is said to be cyclic if there exists an element g ∈ G

that generates all elements of G. That is,

G = {g, g2, g3, . . . , gn = I}
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Where I is the identity element of group G where g is the generator of G.

Definition 2.5.7 (Field)

The triples {F,+,×} that is, a set F together with binary operations +,× is

called field F if the following properties are satisfied for all x, y, z ∈ F.

S.No Name Addition + Multiplication×

1 Associative (x+ y) + z = x+ (y + z) (x× y)× z = x× (y × z)

2 Distributive x(y + z) = xy + xz (x+ y)z = xz + yz

3 Commutative x+ y = y + x x ∗ y = y ∗ x

4 Identity x+ 0 = x x× 1 = x

5 Inverse x+ (−x) = 0 x(x−1) = 1

Table 2.1: Properties of Field

Example 2.5.8 Following are the examples of fields.

1. Set of real numbers R, set of complex numbers C and set of rational numbers

Q are field under addition and multiplication.

2. Set of integers Z is not a field. Because multiplicative inverse of integers not

exist.

Definition 2.5.9 (Finite Field)

The Finite field or Galois Field is the field that has finite number of elements.

Particularly, the order of finite field is must be the power of prime number pn

written as Fpn or GF (pn) when n = 1 finite field has set of integers of modulo p

represent in the form of {0, 1, 2, ...., p− 1}.

Example 2.5.10 Caley table 2.2 and 2.3 show the finite field F11 or GF (11)

under addition and multiplication in modulo 11.

Every element has unique additive and multiplicative inverses that is shown in

2.4. eg. additive inverse of 5 is 6 because 5 + 6 = 0 mod 11. The multiplicative

inverse of 5 is 9 because 5× 9 = 1 mod 11. Additive identity of the field is 0 and

multiplicative identity is 1.
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+ 0 1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 0

2 2 3 4 5 6 7 8 9 10 0 1

3 3 4 5 6 7 8 9 10 0 1 2

4 4 5 6 7 8 9 10 0 1 2 3

5 5 6 7 8 9 10 0 1 2 3 4

6 6 7 8 9 10 0 1 2 3 4 5

7 7 8 9 10 0 1 2 3 4 5 6

8 8 9 10 0 1 2 3 4 5 6 7

9 9 10 0 1 2 3 4 5 6 7 8

10 10 0 1 2 3 4 5 6 7 8 9

Table 2.2: Finite field under addition in mod 11

· 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

Table 2.3: Finite field under multiplication in mod 11

Numbers Additive Inverse Multiplicative Inverse

0 0 −

1 10 1

2 9 6

3 8 4

4 7 3

5 6 9

6 5 2

7 4 8

8 3 7

9 2 5

10 1 1

Table 2.4: List of additive and multiplicative Inverses
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Definition 2.5.11 (Extension Field)

Let F and E be the two fields then F is said to be extension field of E, if E is

the subfield of F. It is denoted by F/E. Furthermore, “let F be the field and p(x)

be any non-constant polynomial. Then there exist the extension E of F in which

p(x) has zero denoted by E = F/p(x).”[8]

Example 2.5.12

1. R, the field of real numbers is the extension field of Q, the field of rational

numbers, denoted by R/Q.

2. C, the field of complex numbers is the extension field of R, field of real

numbers, denoted by C/R.

3. Let x5 + 2x2 + 2x+ 1 ∈ Z3(x) then the irreducible factorization of x5 + 2x2 +

2x + 1 = (x2 + 1)(x3 + 2x + 1). There exist extension fields E of Z3(x) is

E = Z3(x)/(x3 + 2x+ 1) and E = Z3/(x
2 + 1).

4. Let p(x) = x2 + x + 2 ∈ Z3(x) then there exist the extension field E of Z3

such that E = Z3(x)/x2 +x+ 2. The field Z3(x)/x2 +x+ 2 is represented as

{0, 1, x, 2x, x+1, 2x+1, x+2, 2x+2}. Note that (x2+x+2)+(x2+x+2) = 0

this implies the fact x2 + x+ 2 = 0 so x2 = −x− 2 = 2x+ 1. Therefore, in

E there exist the polynomials that are irreducible in mod (x2 + x+ 2).

Definition 2.5.13 (Multiplicative Inverse in finite fields)

It is very easy to find the multiplicative inverse of integers in small field by simply

construct their caley table and find the inverses of any integer. For example, Table

2.4 shows the inverses but it is not practical when we are dealing with large fields.

Multiplicative inverse of any number b ∈ F mod m is possible if gcd(b,m) = 1

otherwise it is not possible. The Extended Euclidean algorithm is use to finding

the inverse of any integer b in mod m which is stated below.

Algorithm 2.5.14 (Extended Euclidean Inverse)

1. “Set (A1, A2, A3) = (1, 0,m) and (B1, B2, B3) = (0, 1, b)

2. If B3 = 0 then return with answer that A3 = gcd(m, b) no inverse of element

b exist
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3. Now check If B3 = 1 then return B3 = gcd(m, b) B2 = b−1 mod m

4. Now divide A3 and B3 set the quotient Q = A3 div B3

5. Now let we take (T1, T2, T3) = (A1 −Q.B1, A2 −Q.B2, A3 −Q.B3)

6. Set (A1, A2, A3) = (B1, B2, B3)

7. Set (B1, B2, B3) = (T1, T2, Ts)

8. Goto step number 2”.[48]

Definition 2.5.15 (Multiplicative Inverse in Extension field)

As previously the extended euclidean Algorithm is also use to find inverse of any

polynomial in extension field. This algorithm will find the multiplicative inverse of

any polynomial b(x) ∈ F modulo an irreducible polynomial when gcd(b(x),m(x)) =

1. To find the inverse of b(x) mod m(x), the following are the steps performed

[48]

Algorithm 2.5.16 (Extended Euclidean Inverse)

1. “Set (A1(x), A2(x), A3(x)) = (1, 0,m(x)) and (B1(x), B2(x), B3(x)) = (0, 1, b(x))

2. If B3(x) = 0 then return with answer that A3(x) = gcd(m(x), b(x)) no

inverse of b(x) exist

3. Now check If B3(x) = 1 then return B3(x) = gcd(m(x), b(x))

B2(x) = b−1(x) mod m(x)

4. Now divide A3(x) and B3(x) set the quotient Q(x) = A3(x) div B3(x)

5. Set (T1(x), T2(x), T3(x)) = (A1(x)−Q(x).B1(x), A2(x)−Q(x).B2(x), A3(x)−

Q(x).B3(x))

6. Set (A1(x), A2(x), A3(x)) = (B1(x), B2(x), B3(x))

7. Set (B1(x), B2(x), B3(x)) = (T1(x), T2(x), T3(x))

8. Goto step number 2.”[48]
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Definition 2.5.17 (Vector Space)

Let V be the non-empty set over the field F then V is the vector space [27] along

with two binary operations that is vector addition and scalar multiplication.

1. Vector Addition: Let v, w ∈ V such that v + w ∈ V

2. Scalar Multiplication: Let a ∈ F and v ∈ V then a.v ∈ V

and satisfying the following properties:

1. V is the Abelian group (Definition 2.5.3) under addition.

2. a(v + w) = av + aw ∀a ∈ F and v, w ∈ V

3. (a+ b).v = a.v + b.v ∀a, b ∈ F and v ∈ V

4. a(b.v) = (a.b)v ∀a, b ∈ F and v ∈ V

5. 1.v = v.1 = v where 1 ∈ F and v ∈ V, 1 is the identity of F

Note: Every Field F is the vector space over itself

Example 2.5.18

1. Set of polynomials Pn having degree less than and equal to n is defined as:

Pn = {a1.x1 + a2.x
2 + · · ·+ an.x

n|ai ∈ F , i ≤ n ∈ N}

Pn = {
∑n

i=0 ai.x
i|ai ∈ F , i ≤ n ∈ N}

Vector addition is defined as:∑n
i=0 ai.x

i +
∑n

i=0 bi.x
i=
∑n

i=0(ai + bi)x
i ∵ ai, bi ∈ F

and Scalar multiplication is defined as:

α.
∑n

i=0 aix
i =

∑n
i=0 αaix

i ∵ α ∈ F

2. The set Mn of all n×n matrices with all entries from the field F is the vector

space over F

Definition 2.5.19 (Spanning Set/Linear Span)

Let S be the set of vectors S then set of all linear combination of S is called linear

span or spanning set [27] of S. This span a vector space is 〈S〉.
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Definition 2.5.20 (Linearly Independent)

Let V be a vector space over the field F. Then the set of vectors {v1, v2, v3, . . . , vn}

are said to be linearly independent [27] if

a1.v1 + a2.v2 + a3.v3, . . . , an.vn = 0

implies each ai = 0

Definition 2.5.21 (Basis)

Let B be the subset of a vector space V over the field F. Then B is the basis [27]

of V, If

1. B is the spanning set of V.

2. B is linearly independent.

Example 2.5.22 The set {v1, v2} = {(2, 2), (−3, 5)} forms a basis of R2. Infact,

let (x, y) ∈ R2

(x, y) = a1(2, 2) + a2(−3, 5)

= (2a1 − 3a2, 2a1 + 5a2)

It can be written as

2a1 − 3a2 = x

2a1 + 5a2 = y

2 −3

2 5

a1
a2

 =

x
y


Determinant of coefficient matrix is∣∣∣∣∣∣2 −3

2 5

∣∣∣∣∣∣ = 10 + 6 = 16 6= 0
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Therefore, the system has unique solution. So, every element (x, y) ∈ R2 can be

written as linear combination of elements in S. Now we check whether {v1, v2}

are linearly independent. Let

2a1 − 3a2 = 0

2a1 + 5a2 = 0

Solving the above equation simultaneously we get a1 = a2 = 0. Therefore, {v1, v2}

are linearly independent. It follows, that {v1, v2} forms the basis of R2.

2.5.1 Bilinear Mapping

As discussed in Section 2.1.1 Diffie Helmen solved the problem of sharing the key

between two parties. Choose group G of order prime p and g is the generator of

G. When two parties A and B wants to communicate with each other.

1. A and B chooses some a ∈ Zp and b ∈ Zp respectively.

2. A send ga to B and B send gb to A. Where ga is public key of A and gb is

the public key of B.

3. A compute SKA = (gy)x as secret key of A and B compute SKB = (gx)y

Note that if we have three parties A, B and C using the above method, it becomes

difficult to calculate public key for C. A bilinear mapping can be used to overcome

this difficulty

Definition 2.5.23 (Bilinear Mapping)

It is the mapping the combining two elements of two groups G1 and G2 yields

element of third group G3. It is linear in each argument. Let G1 and G2 and G3

be the groups, the bilinear mapping is a function φ : G1 ×G2 → G3 if it satisfies

the following properties.

1. φ(X, Y + Z) = φ(X, Y ).φ(X,Z)
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2. φ(X + Y, Z) = φ(X,Z).φ(Y, Z)

3. let G1 and G2 be the two groups and bilinear mapping is defined as

φ : G1 ×G1 → G2 and let X and Y be the generator of G1 and let a, b ∈ Z

aX =

a︷ ︸︸ ︷
X +X +X + ....X

bY =

b︷ ︸︸ ︷
Y + Y + Y + ....Y

φ(X+X+X+X...+X, Y+Y+Y...+Y ) =

ab︷ ︸︸ ︷
φ(X, Y ).φ(X, Y ).φ(X, Y ) . . . φ(X, Y )

or

φ(aX, bY ) = φ(X, Y )ab ∀a, b ∈ Z

Example 2.5.24 The following are the examples of bilinear mapping.

1. Matrix multiplication is bilinear mapping which is defined as

φ : Mn×m ×Mm×n →Mn×n

2. The dot product between vector space Rn is also bilinear defined as φ(v, w) =

v1.w1+v2.w2 . . . vn.wn. It is bilinear mapping in the sense because it is linear

transformation in each of its variable.

Using this bilinear mapping, it is easy to exchange key for three parties using these

steps.

1. A, B, C chooses a, b, c ∈ Z respectively, that are kept secret.

2. A, B, C publish ag, bg, cg

3. A compute φ(bg, cg) = φ(g, g)bc and calculate secret key

SKA = (φ(g, g)bc)a = φ(g, g)abc

4. B compute φ(ag, cg) = φ(g, g)ac and calculate secret key

SKB = (φ(g, g)ac)b = φ(g, g)abc

5. Similarly, C compute φ(ag, bg) = φ(g, g)ab and calculate secret key

SKC = (φ(g, g)ab)c = φ(g, g)abc
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For security purpose, we are interested in the bilinear mapping that satisfies ad-

ditional two properties stated as:

1. Non-Degenerate The mapping φ is said to be non-degenerate

φ(X,X) 6= 1

where X is the generator of G1.

2. Computable: There exist an efficient algorithm that is used to compute

the mapping φ(X, Y ) for any X, Y ∈ G1. The efficient algorithm has been

discussed in Chapter 3 and Section 3.2.3

Example 2.5.25 Weil pairing is an example of such a map that we will discuss

in Chapter 3.



Chapter 3

Weil Pairing on Elliptic Curve

In Chapter 4, we will discuss the identity based broadcast encryption scheme that

is based on bilinear pairing. A good example of bilinear pairing is weil pairing

[34]. In this chapter, we will explain how a weil pairing can be implemented using

elliptic curve. We start with the brief introduction of elliptic curve.

3.1 Elliptic Curve

Generally, the elliptic curve [51] is the equation of two variable. The general form

of elliptic curve is the generalized Weiestrass equation [46] as given below.

y2 + axy + by = x3 + cx2 + dx+ e where a, b, c, d, e are constants (3.1)

In this thesis, we used the simplified form of Weiestrass equation for elliptic curve

as mentioned below:

y2 = x3 + ax+ b (3.2)

where a and b are constants. Further the variables x, y together with the elements

a and b are the elements of some field F such as field of real numbers R, the field

of complex numbers C, or any other finite field Fp(= Zp) or the field extension

30
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Fpk (p is prime and k ∈ Z). The set of all points satisfying equation (3.2) will be

denoted by EF(a, b).

Although, it is very difficult to plot elliptic curve in most of the field. So, we give

examples of two elliptic curves over the field of real numbers. The first one is

ER(0, 1) and its graph is Figure 3.1. The second is ER(−1, 0) shown in Figure 3.2.

Figure 3.1: Elliptic Curve: y2 = x3 + 1

Figure 3.2: Elliptic Curve: y2 = x3 − x
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It can be shown that a group can be defined on the set EF(a, b) for any specific

value of a, b in equation (3.2), provided that the following condition is met.

4a3 + 27b2 6= 0 (3.3)

It is easy to define the group properties over Q and R but the problem is that

it is slower and inaccurate. So, from cryptographic point of view we are mainly

interested in elliptic curve over finite field.

3.1.1 Addition of Points on Elliptic Curve:

Let A = (x1, y1) and B(x2, y2) be the two points on elliptic curve EF(a, b) given by

equation y2 = x3 + ax+ b. When we add two points A = (x1, y1) and B = (x2, y2)

we draw a line from A to B between them C ′ be the intersection point. The

reflection of C ′(x3,−y3) is C(x3, y3) through the x-axis. So, the addition of points

A and B is as follow:

A+B = C (3.4)

Assume that A 6= B. The slope s of line AB is s =
y2 − y1
x2 − x1

. Let x1 6= x2 The

equation of line AB is y = sx+ y0 which implies that

y0 = y − sx = y1 − sx1 = y2 − sx2

Using equation of line and putting value of y in equation (3.2) we get

(sx+ y0)
2 = x3 + ax+ b

s2x2 + y20 + 2sxy0 = x3 + ax+ b (3.5)

Now, we already know that x1 and x2 be the solution of the equation 3.2. Now we

can find the third point x3 where line meet the curve. Therefore, following cubic
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equation will be the solution of equation (3.2).

(x− x1)(x− x2)(x− x3) = 0

Multiplying and rearranging the terms:

x3 + x2(−x2 − x3 − x1) + x(x1x2 − x2x3 + x1x3)− x3x2x1 = 0 (3.6)

Comparing the coefficient of x2 of 3.5 and 3.6, We get

x2 + x3 + x1 = s2

Hence the required point are

x3 = s2 − x2 − x1

Now, we can compute y3 by taking equation of straight line as.

y3 = sx3 + y0

−y3 = −(sx3 + y0)

Now we obtain the points of C = (x3, y3) is

x3 = s2 − x2 − x1

y3 = −(sx3 + y0)

Now consider the case when A = B = (x1, y1) so we need to find the equation of

tangent line. For finding slope,

2y
dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y
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For point A the formula of slope is

dy

dx
=

3x21 + a

2y1

Similarly, one can find the formula of point x3, y3 using the above procedure:

x3 = s2 − 2x1

y3 = −(sx3 + y0) (3.7)

Another case we considered in curve y2 = x3+ax+b, if two point are the reflection

of each other the vertical line will not touch the curve the only solution of the point

is line at infinity denoted by O.

3.1.2 Elliptic Curve over finite field

Let EF(a, b) be the elliptic curve defined over finite field Fp. Therefore, there are

finitely many pairs (x, y) with x, y ∈ Fp, for which the group EF(a, b) is finite. We

take curve of the form.

y2 = x3 + ax+ b mod p where 4a3 + 27b2 mod p 6= 0

where p is prime number and a and b are the elements of Fp = Zp. Now let’s

discuss an example of elliptic curve over finite field.

Example 3.1.1 Choosing a = 0 and b = 1 and the field F11 = Z11 in equation

(3.8) we get

y2 = x3 + 1 mod 11 (3.8)

Taking x = 0 ∈ Z11 in equation (3.8) becomes y2 = 1 mod 11. Its solution gives

y = 1 and y = 10. So, two points against x = 0 are (0, 1) and (0, 10). Again the

value x = 1, gives

y2 = 2 mod p
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which has no solution in Z11. Similarly, for other values of x in Z11 have

x = 2, 3, . . . 10 the respective points on the E11(0, 1) are given in Table 3.1.

There are 11 points lying on elliptic curve and when identity O is added the total

x y2 y1,2 E11(0, 1) E11(0, 1)

0 1 (1, 10) (0, 1) (0, 10)

1 2 − − −

2 9 (3,8) (2,3) (2,8)

3 6 − − −

4 10 − − −

5 5 (4,7) (5,4) (5,7)

6 8 − − −

7 3 (5,6) (7,5) (7,6)

8 7 − − −

9 4 (2,9) (9,2) (9,9)

10 0 0 (10, 0) −

Table 3.1: Elliptic Curve over Z11

becomes twelve points in elliptic curve. Therefore, order is n = 12.

The Figure 3.3 shows the discrete and finite points of elliptic curve which are

defined over finite field Z11.

Figure 3.3: Elliptic Curve: y2 = x3 + 1 over Z11

Addition of point on elliptic curve on finite field can defined using the same pro-

cedure as discussed in Section3.1.1 with all arithmetic operation performed in
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modulus. This procedure for addition of points on elliptic curve over finite fields

F is summarize by the following algorithm.

Algorithm 3.1.2 (Addition Algorithm)

Input: A(x1, y1), B(x2, y2), a, b is points on elliptic curve.

Output: C(x3, y3)

Following are the steps.

1. If A = O then set point C = B

2. If B = O then set point C = A

3. If A 6= B but x1 = x2. Then A+B = O where O is point of infinity

4. If A = B then slope is equal to

s =
3x21 + a

2y1
mod p = (3x21 + a)(2y1)

−1 mod p

Note that taking inverse of denominator term by using extended euclidean

inverse its program is mentioned in Appendix.

5. If A = B but y1 6= O then co-ordinates of C are x3 = s2 − 2x1 mod p

y3 = s(x1 − x2)− y2 mod p where slope of line AB is

s = (3x21 + a)(2y1)
−1 mod p

6. If A = B and y1 = 0. It means that point is adding to itself also called point

doubling. One can write it as 2 ∗ A = A + A then A + B = O where O is

point of infinity.

7. If A 6= B and x1 6= x2 then points of C are x3 = s2 − x1 − x2 mod p and

y3 = x2 − x3 − y2 mod p where slope of line AB is

s =
y2 − y1
x2 − x1

mod p = (y2 − y1)(x2 − x1)−1 mod p

Now, we define the group structure of elliptic curve as:

1. The point at infinity O is the additive identity of elliptic curve. That is, for

any point A on elliptic curve, we have A+O = O + A = A
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2. For any point A on elliptic curve the negative of A is the point with same

x-coordinate and negative y-coordinate, that is, if A = (x, y) then −A =

(x,−y) satisfies A+ (−A) =O. Note that A an (−A) form a vertical line.

3. For any point A and B on elliptic curve having different x-coordinate. To

add A and B draw straight line between them and we will find the third

intersection point C ′. To define group structure we need to define A+B = C

where C is the reflection point of C ′. Similarly, the line from A to B is same

as line from B to A that give the proof elliptic curve satisfies commutative

property. Mathematically, it is written as A+B = B + A

4. Let A(x1, y1), B(x2, y2) and C(x3, y3) be the points on elliptic curve, the

associative law hold states that (A+B) + C = A+ (B + C)

Now, we will give an example of addition of two points on elliptic curve defined

over finite field.

Example 3.1.3 Using Example 3.1.1 we take two points A(2, 3) and B(5, 4) now

we calculate A+B on E11(0, 1) as A 6= B. Then slope of AB is defined as

s =
y2 − y1
x2 − x1

mod 11

s =
4− 3

5− 2
mod 11

s =
1

3

s = 3−1 mod 11

Using the extended euclidean inverse 2.5.14 for modular inverses we get

s = 4 mod 11
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The formula for finding points is x3 = s2− x1− x2 and y3 = x2− x3− y2. Putting

value of s, A and B, we get

x3 = s2 − x1 − x2 mod p

x3 = 42 − 2− 5 mod 11

x3 = 9 mod 11

y0 = y1 − sx1 mod p

y0 = 3− 4× 2 mod 11

y0 = −5 = 6 mod 11

y3 = −(sx3 + y0) mod 11

y3 = −(4× 9 + 6) = −9 mod 11

y3 = 2

Therefore, A+B = (9, 2) ∈ E11(0, 1) as shown in Table 3.1

Using ApCoCoA [1] program we can add points on elliptic curve is define in Ap-

pendix. With the help of program we generate the cayley table of group of points

on elliptic curve.

Using Table 3.2 it is easy to verify all abelian group properties of the elliptic curve

E11(0, 1).

+ (0,1) (0,10) (2,3) (2,8) (5,4) (5,7) (7,5) (7,6) (9,2) (9,9) (10,0)

(0,1) (0,10) O (10,0) (2,3) (9,9) (7,6) (5,4) (9,2) (5,7) (7,5) (2,8)

(0,10) O (0,1) (2,8) (10,0) (7,5) (9,2) (9,9) (5,7) (7,6) (5,4) (2,3)

(2,3) (10,0) (2,8) (0,1) O (9,2) (7,5) (7,6) (5,4) (9,9) (5,7) (0,10)

(2,8) (2,3) (10,0) O (0,10) (7,6) (9,9) (5,7) (7,5) (5,4) (9,2) (0,1)

(5,4) (9,9) (7,5) (9,2) (7,6) (10,0) O (2,3) (0,1) (0,10) (2,8) (5,7)

(5,7) (7,6) (9,2) (7,5) (9,9) O (10,0) (0,10) (2,8) (2,3) (0,1) (5,4)

(7,5) (5,4) (9,9) (7,6) (5,7) (2,3) (0,10) (2,8) O (0,1) (10,0) (9,2)

(7,6) (9,2) (5,7) (5,4) (7,5) (0,1) (2,8) O (2,3) (10,0) (0,10) (9,9)

(9,2) (5,7) (7,6) (9,9) (5,4) (0,10) (2,3) (0,1) (10,0) (2,8) O (7,5)

(9,9) (7,5) (5,4) (5,7) (9,2) (2,8) (0,1) (10,0) (0,10) O (2,3) (7,6)

(10,0) (2,8) (2,3) (0,10) (0,1) (5,7) (5,4) (9,2) (9,9) (7,5) (7,6) O

Table 3.2: Addition Cayley Table of Elliptic Curve over F11
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3.1.3 Scalar multiplication and order of point

Let EF(a, b) be the elliptic curve the point multiplication of any point A with some

scalar n ∈ Z is defined as nA = A+ A+ . . . A︸ ︷︷ ︸
n

. The natural question arises that

how many times we add A to itself to get point of infinity O. For that purpose we

need to define the order of A.

The order of A is the defined as nA = O where n ∈ N. If there exist no integer

that A is of infinite order. But when are dealing with finite field order is finite.

When we say A is of order 2 then it means that 2A = O and easy to calculate.

For example the above cayley Table 3.2 shows that 2(5, 4) = O.

3.1.4 Divisors

Let EF(a, b) be the elliptic curve defined over finite field Fp, the divisor D on

elliptic curve is the linear combination m1A1 + m2A2 + · · · + mnAn of distinct

points A on EF(a, b) with integral coefficients m1,m2, . . . ,mn ∈ Z and n ∈ N [3]

D =
∑

Ai∈EF(a,b)

mi(Ai) 1 ≤ i ≤ n

Where finitely many mi are zero.

The degree of divisor D is the sum of coefficient of mi.

deg(D) =
∑

Ai∈EF(a,b)

mi 1 ≤ i ≤ n

The order of divisor D is the integer ordp(D) = mi

The sum of divisor D simply uses the group law on EF(a, b) to add the point A to

itself mn times.

sum(D) =
∑

Ai∈EF(a,b)

miA 1 ≤ i ≤ n
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To understand the concept of divisor we need to review some definitions that are

used in divisors.

Definition 3.1.4 (Rational Function)

The rational function defined over EF(a, b) as:

f =
p(x)

q(x)

Where p(x) and q(x) are polynomials. Let A be the point on elliptic curve EF(a, b),

if f(A) = 0 then f is said to have zero at A and if f is undefined on A then f is

said to have pole at A.

The divisor of rational function f is denoted by div(f). Let we have the rational

function as follow:

f(x) =
a(x− a0)c0(x− a1)c1(x− a2)c2 . . . (x− an)cn

b(x− bo)d0(x− b1)d1(x− b2)d2 . . . (x− bm)dm
(3.9)

Note that multiplicity of a0 is c0 and that of b0 is d0 and so on. So, the divisor of

rational function (3.9) together with their multiplicity are written as

div(f) = c0(a0) + c1(a1) + . . . cn(an)− d0(b0)− d1(b1)− · · · − dm(bm)

For the divisors of elliptic curve, we have following result.

Theorem 3.1.5 Let EF(a, b) be the elliptic curve and D be the divisor on

EF(a, b) with deg(D) = 0. Then ∃ a function f on EF(a, b) with div(f) = D

if and only if sum(D) = O. For proof see [51].

Example 3.1.6 We find the divisor [3] of elliptic curve as defined above:

y2 = x3 + 1 over the field F11. Let

D = (5, 7) + (10, 0) + (7, 5) + (2, 8)− 4(O) (3.10)

As deg(D) = 0 and using addition Algorithm 3.1.2 it is shown easily that sum(D) =

O. Therefore, D is the divisor of function. Now we have to find out the rational

functions of divisor. Firstly we have to find the line passing through the point
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(10, 0) and (5, 7). General equation of line is give below

y − y1 = s(x− x1)

Where s is the slope between the points

s =
y2 − y1
x2 − x1

Putting values, we get

s =
7− 0

5− 10
mod 11

s =
7

−5
= (7)× (−5)−1 = 3 mod 11

Putting values in equation of line, we get

y − 7 = 3(x− 5)

y − 7 = 3x− 15

y − 3x+ 8 = 0

div(y − 3x+ 8) = (10, 0) + 2(5, 7)− 3(O) (3.11)

Where (5, 7) is double of (10, 0). The vertical line through (5, 7) is y − 5 = 0.

Therefore, the divisor is:

div(y − 5) = (5, 7) + (5,−7)− 2(O) (3.12)

Subtracting (3.11) and (3.12), we get

div(y − 3x+ 8)− div(y − 5) = ((10, 0) + 2(5, 7)− 3(O))− ((5, 7) + (5,−7)− 2(O))
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It can written as

div(y − 3x+ 8)

div(y − 5)
= (10, 0) + (5, 7)− (5,−7)− (O)

div(y − 3x+ 8)

div(y − 5)
+ (5,−7) + (O) = (10, 0) + (5, 7)

Putting value in (3.10)

D = div

(
y − 3x+ 8

y − 5

)
+ (7, 5) + (2, 8) + (5,−7)− 3(O)

Similarly

(7, 5) + (2, 8) = (5, 7) + div

(
y + 5x+ 4

y − 5

)
+ (O)

D = (5,−7) + div

(
y − 3x+ 8

y − 5
+ (5, 7)

)
+ div

(
y + 5x+ 4

y − 5
− 2(O)

)

We have already calculate the vertical line through (5,7). Therefore

D = div(y − 5) + div

(
y − 3x+ 8

y − 5

)
+ div

(
y + 5x+ 4

y − 5

)
D =

(
(y − 3x+ 8)(y + 5x+ 4)

(y − 5)2

)

Hence, the divisor of EF(a, b) is:

D =
(y − 3x+ 8)(y + 5x+ 4)

(y − 5)
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3.2 Weil pairing on elliptic curve

The goal of this section is to introduced the concept of weil pairing [34]. For this

we start with the concept of bilinear pairing that has been discussed in Section

2.5.1. Let A,B ∈ EF(a, b) and let fA and fB be two rational functions about point

A and B respectively, having divisors

div(fA) = n(A)− n(O)

div(fB) = n(B)− n(O)

Where n is order of point A and B. Here, divisor div(fA) represents that the

rational functions fA become zero when we put point A or any multiple of A and

it will gives infinity when we put point of infinity. Similarly, fB become zero at

point B or any multiple of B and pole at point of infinity.

The weil pairing is the φn : EF(a, b)× EF(a, b) −→ F:

φn(A,B) =

fA(B+C)
fA(C)

fB(A−C)
fB(−C)

(3.13)

Where C /∈ {O, A,−B,A−B} and n is the order of point of elliptic curve.

Now, we will discuss that why point C is not equal to {O, A,−B,A−B}. Following

are the reasons for C.

• If we will put C = O in equation (3.13) then it will becomes

φn(A,B) =

fA(B+C)
fA(O)

fB(A−C)
fB(O)

then rational function fA, fB becomes infinity therefore φn(A,B) =∞.

• If C = A then equation (3.13) becomes

φn(A,B) =

fA(B+A)
fA(A)

fB(A−A)
fB(−A)



Weil Pairing on Elliptic curve 44

φn(A,B) =

fA(B+A)
fA(A)

fB(O)
fB(−A)

As we calculate the rational function fA about point A so by putting point

A in fA then it will become zero and first fraction becomes infinity and also

fB(A−A) = fB(O) (A+(−A) = O) it gives infinity. so weil pairing between

A and B becomes infinity i.e. φn(A,B) =∞.

• Similarly, When C = −B, weil pairing is equal to

φn(A,B) =

fA(O)
fA(−B)

fB(A+B)
fB(B)

Therefore, denominator becomes zero and numerator is equal to zero.

• When C = A−B then equation (3.13) becomes

φn(A,B) =

fA(B+(A−B))
fA(A−B)

fB(A−(A−B))
fB(−(A−B))

φn(A,B) =

fA(A)
fA(A−B)

fB(B)
fB(B−A)

The rational functions about point A and B are zero i.e. fA = 0, fB = 0

it will give singularity, but fA(A − B), fB(B − A) are not equal to zero.

Therefore, numerator of weil pairing is equal to zero and denominator equal

to infinity. That’s why weil pairing equal to infinity i.e. φn(A,B) =∞

3.2.1 Properties of Weil Pairing

The weil pairing has following properties [13]:

1. φn(A,B) is independent of choice of C

2. φn(A,B)n is nth root of unity.
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3. φn(A,B) is bilinear; that is

φn(A+B,C) = φn(A,C)φn(B,C)

φn(A,B + C) = φn(A,B)φn(A,C)

4. φn(A,A) = 1 ∀A ∈ EF(a, b) =⇒ φn(A,B) = φn(B,A)−1 ∀A,B ∈ EF(a, b)

It can be proved that let 1 = φn(A+ B,A+ B) by applying third property

of weil pairing we have 1 = φn(A,A)φn(A,B)φn(B,A)φn(B,B)

1 = (1)φn(A,B)φn(B,A)(1)

φn(A,B) = φn(B,A)−1

5. If φn(A,B) = 1 then A = O ∀B ∈ EF(a, b)

The proof of all these properties are available in [13]

Example 3.2.1 Let elliptic curve be defined as y2 = x3 + 2 over Fp = F7. Let

A = (5, 1), B = (6, 1) be the points of elliptic curve E7(0, 2), both points are of

order n = 3. Now we calculate the weil pairing between the A and B such that

φn(A,B) = φ3((5, 1), (6, 1))

We will take divisors of A and B, for the natural choice as some authors use

D(A) = (A)−O and D(B) = (B+C)− (C) where C be any point on elliptic curve.

Now we will compute the rational function of D(A) and D(B) after that we will

calculate weil pairing by dividing the divisor of D(A) by D(B).

Let

D(5,1) = ((5, 1))−O and D(6,1) = ((6, 1) + (0, 4))− ((0, 4))

Adding the points (6, 1)+(0, 4) by using formula (3.7) we get (6, 1)+(0, 4) = (3, 1).

Therefore, the divisor are

D(5,1) = ((5, 1))−O and D(6,1) = ((3, 1))− ((0, 4))
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Now we calculate the rational functions of divisors, calculate the tangent line along

(5, 1) Using the formula of slope

s =
3(x1)

2 + a

2(y1)
mod 7

s =
3(5)2 + 0

2(1)
mod 7

s = 6 mod 7

Therefore, the tangent line along (5, 1)

y − y1 = s(x− x1) mod p

y − 1 = 6(x− 5) mod 7x+ y + 1 = 0 mod 7

Similarly, tangent line along (3, 1)

4x+ y + 1 = 0

Tangent line along (0, 4)

y + 3 = 0

After calculation, we get the divisor of rational functions as

div(x+ y + 1) = 3D(5,1) and

div(4x+ y + 1)− div(y + 3) = div(
(4x+ y + 1)

(y + 3)
) = 3D(6,1)

Therefore, rational functions are

f(5,1) = (x+ y + 1), f(6,1) =
(4x+ y + 1)

(y + 3)
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We will compute the rational function f(5,1) by putting points (3, 1) and (0, 4) in

numerator and denominator respectively

f(5,1)(D(6,1)) =
(x+ y + 1)|(3,1)
(x+ y + 1)|(0,4)

mod 7

f(5,1)(D(6,1)) =
5

5
mod 7 = 1 mod 7

Hence, rational function f(6,1) by putting points (5, 1) in numerator and denomi-

nator

f(6,1)(D(5,1)) =
(4x+ y + 1)|(5,1)

(y + 3)|(5,1)
mod 7

f(6,1)(D(5,1)) =
11

2
mod 7 = (11)× (2)−1 mod 7

f(6,1)(D(5,1)) = 11× 4 mod 7 = 2 mod 7

For point O the rational function is f(6,1)(O) = 1 because the term y in numerator

and denominator represent that when (x, y) → ∞ then ratio between them is 1.

Therefore, weil pairing is

φ3((5, 1), (6, 1)) =
f(5,1)
f(6,1)

=
1

2
mod 7 = (1)× (2)−1 mod 7 = 4 mod 7

It is easy to check that 4 is third root of unity 43 mod 7 = 1 mod 7

3.2.2 Miller’s Algorithm

See in Example 3.2.1 points on an elliptic curve over field of small size is easy but

computations are difficult and time taking when we consider large fields, as the

process given above is not computer friendly. For that purpose, we use Miller’s

algorithm [36] to evaluate the rational function and then calculate the weil pairing

as well.

Definition 3.2.2 (Miller’s function)

Let s be the slope of line AB where A,B ∈ EF(a, b) . Let say A = (x1, y1) and
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B = (x2, y2) the function fA,B on EF(a, b) is define as

fA,B =


y − y1 − s(x− x1)
x+ x1 + x2 − s2

if s 6=∞

x− x1 if s =∞
(3.14)

The divisor of fA,B is given by div(f) = (A) + (B)− (A+B)− (O)

The Miller’s algorithm is stated below.

Algorithm 3.2.3 (Miller’s algorithm)

Take an input A(x1, y1) ∈ EF(a, b), n which is the order of of point A, and K

which is the binary representation of n. Now following are the steps that is use to

calculate the rational function about point A here it is denoted by fA = fA,A and

fB = fB,B

1: Set Q = A; and fA,A = 1; . A is the point at which Weil pairing is calculated

2: Set K =binary representation of n

3: for I = lenght(K)− 1 To 1 do

4: fA,A = f2A,A × fQ,Q . Using formula (3.14) function between point Q and Q

5: Q = 2Q . Doubling the point Q

6: if K[I] = 1 then

7: fA,A = fA,A × fA,Q . Using formula (3.14) function between point A and Q

8: Q = Q+A . Adding point Q and A

9: end if

10: end for

11: Return fA,A

Example 3.2.4 Using the 3.2.1 again calculating the weil pairing by using the

miller Algorithm. Let E7(0, 2) be defined as y2 = x3+2. Let A = (5, 1), B = (6, 1)

be the points of elliptic curve E7(0, 2), both points are of order n = 3. Now we

calculate the weil pairing between the A and B such that

φn(A,B) = φ3((5, 1), (6, 1))
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. Let C = (0, 4) of order 3. Follow the steps of Algorithm we have A(x1, y1) = (5, 1)

, n = 3 and K = binary representation of n = (11)

Set Q = A = (5, 1) and fA,A = 1

Stating the loop

Step 1 When I = Lenght(K) − 1 = 2 − 1. This means that loop is executed at

one time only. Calculate function between Q and Q by using formula 3.14

fQ,Q =
(x+ y + 1)

(x+ 2)
and f 2

A,A = 1.1 = 1

So,

fA,A = f 2
A,A × fQ,Q

fA,A =
(x+ y + 1)

(x+ 2)

Now doubling point Q by using formula (3.7)

Q = 2(5, 1) = (5, 6)

Since Ith bit of K is second bit of K = 1 (condition on line 6 is true). Now we

proceed further and calculate function between Q and A by using formula (3.14)

fA,Q = x+ 2 and previously calculated fA,A =
(x+ y + 1)

(x+ 2)

So,

fA,A = fA,A ∗ fA,Q

fA,A = x+ y + 1
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Now we adding point Q and A. Now the point Q becomes

Q = Q+ A

Q = O

Now terminate the loop at that point. Similarly, follow the above step we calculate

the rational function about point B = (6, 1)

fB,B =
(2x+ y + 1)

(x+ 1)
× (2x+ 2)

Therefore, the weil pairing between A and B by using formula 3.13. Now we will

evaluate numerator of fA,A about B+C = (6, 1) + (0, 4) = (3, 1) and denominator

of fA,A about C = (0, 4) by using ApCoCoA tool. The results are as follows.

fA,A(B + C)

fA,A(C)
=

5

5
mod 7 = 1 mod 7 (3.15)

Similarly, we compute the numerator of fB,B about A−C = (5, 1)+(0,−4) = (3, 1)

and denominator of fB,B about −C = (0,−4) using ApCoCoA tool. The result

are as follow:

fB,B(A− C)

fB,B(−C)
=

1

4
mod 7 = (1)(4)−1 mod 7

fB,B(A− C)

fB,B(−C)
= (1)(4)−1 mod 7 = 2 mod 7 (3.16)

Dividing (3.15) by (3.16), we get

fA,A(B+C)

fA,A(C)

fB,B(A−C)

fB,B(−C)

=
1

2
mod 7 = (1)(2)−1 mod 7 = 4 mod 7

Hence φ3((5, 1), (6, 1)) = 4

It is easy to check that 4 is third root of unity 43 mod 7 = 1 mod 7

By using the miller Algorithm we will calculate the weil pairing for large fields see

next example.
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Example 3.2.5 Let EF(a, b) be the elliptic curve defined as y2 = x3 + 37x over

field F1009. Using Miller’s algorithm 3.2.3 we calculate weil pairing between two

points.

Let A = (8, 703) ,B = (49, 20) be the points on elliptic curve for other points set

A′ = 2A = (417, 952) ,B′ = 3B = (561, 153) all these points are of order 7. let

us choose C = (0, 0) of order 2. Now first we have to calculate the weil pairing

between A and B

Follow the steps of algorithm then we have A(x1, y1) = (8, 703) , n = 7 and K =

binary representation of n = (111)

Set Q = A = (8, 703) and fA,A = 1

Starting the loop:

Step 1: When I = Lenght(K)− 1 = 3− 1 = 2

Calculate function between Q and Q by using formula 3.14

fQ,Q =
(157x+ y + 59)

(x+ 592)
and f 2

A,A = 1.1 = 1

So,

fA,A = f 2
A,A ∗ fQ,Q

It gives

fA,A =
(157x+ y + 59)

(x+ 592)

Now, the double the point Q we get

Q = 2Q = 2(49, 20)

Q = (417, 952)



Weil Pairing on Elliptic curve 52

Since Ith bit of K is second bit of K = 1 (condition on line 6 is true). Now we

proceed further and calculate function between Q and A by using formula (3.14)

fA,Q =
(66x+ y + 787)

(x+ 105)
and previously calculated fA,A =

(157x+ y + 59)

(x+ 592)

So,

fA,A = fA,A ∗ fA,Q

Multiplying the functions we get.

fA,A =
(272x2 + 223xy + y2 + 319x+ 846y + 19)

(x2 + 697x+ 611)

Now we adding point Q and A. Now the point Q becomes

Q = Q+ A

Q = (417, 952) + (8, 703)

Q = (904, 920)

Step 2:

In second iteration the value of I is decremented as I = 1

Calculate function between Q and Q by using formula (3.14).

fQ,Q =
(118x+ y + 371)

(x+ 1001)
and value of fA,A from first iteration fA =

(157x+ y + 59)

(x+ 592)

fA = f 2
A ∗ fQ,Q
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Squaring the function fA,A and multiplying it with fQ,Q

Numerator of fA,A = 244x5 + 460x4y + 535x3y2 + 992x2y3 + 564xy4 + y5+

839x4 + 919x3y + 815x2y2 + 452xy3 + 45y4 + 49x3+

238x2y + 157xy2 + 507y3 + 677x2 + 825xy + 10y2+

369x+ 889y + 743

Denominator of fA,A = x5 + 377x4 + 640x3 + 648x2 + 905x+ 72

fA,A =
Numerator of fA,A

Denominator of fA,A
(3.17)

Doubling the point Q we get

Q = 2 ∗Q

Q = (8, 306)

Since Ith bit of K is third bit of K = 1 (condition on line 6 is true). Now we

proceed further and calculate function between Q and A by using formula (3.14)

fA,Q =
(118x+ y + 371)

(x+ 1001)

Now, squaring the function fA,A (3.17) and multiplying it by fA,Q i.e fA,A =

(fA,A)2fA,Q we get

Numerator of fA,A = 244x6 + 460x5y + 535x4y2 + 992x3y3 + 564x2y4 + xy5+

905x5 + 266x4y + 571x3y2 + 588x2y3 + 578xy4 + 1001y5+

400x4 + 958x3y + 700x2y2 + 927xy3 + 649y4 + 285x3+

939x2y + 772xy2 + 989y3 + 1007x2 + 343xy + 929y2+

818x+ 960y + 110
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Denominator of fA,A = x5 + 377x4 + 640x3 + 648x2 + 905x+ 72

fA,A =
Numerator of fA,A

Denominator of fA,A

Now we adding point Q and A. Now the point Q becomes

Q = Q+ A

Q = O

Now the loop is decremented and value of I = 0 which is not true. Here we stop

iteration and the when point becomes Q = O.

Similarly, by using the above steps one can calculate miller function using miller

Algorithm 3.2.3 about point B denoted by fB = fB,B. Using the ApCoCoA code

see Appendix A the value of fB,B is calculated as

Numerator of fB,B = 316x6 + 279x5y + 343x4y2 + 911x3y3 + 70x2y4 + xy5 +

398x5 + 663x4y + 201x3y2 + 734x2y3 + 103xy4 + 960y5 +

110x4 + 627x3y + 35x2y2 + 274xy3 + 431y4 + 405x3 +

762x2y + 776xy2 + 848y3 + 225x2 + 814xy + 981y2 +

406x+ 117y + 1003

Denominator of fB,B = x5 + 97x4 + 190x3 + 138x2 + 391x+ 142

fB,B =
Numerator of fB,B

Denominator of fB,B

That’s all about miller Algorithm, now we calculate the weil pairing about A and B

by using formula 3.13. For that purpose, we will evaluate numerator of fA,A = fA

about B + C and denominator of fA,A = fA about C by using ApCoCoA tool.
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The results are as follows.

fA(B + C)

fA(C)
=
−24102900

2109450
mod 1009

fA(B + C)

fA(C)
= 739 mod 1009 (3.18)

By using the formula of Weil pairing 3.13, we will evaluate numerator of fB,B = fB

about A− C and denominator of fB,B = fB about −C.

Using ApCoCoA tool the result is

fB(A− C)

fA(−C)
=
−475448

217069054
mod 1009

fB(A− C)

fA(−C)
= 574 mod 1009 (3.19)

Now, dividing (3.18) by (3.19) by calculating the inverse of denominator by using

extended euclidean Algorithm 2.5.14 and multiplying the inverse by numerator,

then we get the required pairing that is.

φn(A,B) =
739

574
mod 1009 = (739)(574)−1 mod 1009 = 105 mod 1009

All calculation has been done using ApCoCoA program see Appendix.

It is easy to verify that 105 is the 7th root of unity such that

1057 mod 1009 = 1 mod 1009

Now by using the above procedure one can calculate the weil pairing between

A′ = (417, 952) and B′ = (561, 153) is

φn(A′, B′) = 394 mod 1009

Verification of bilinear property on weil pairing

φn(A′, B′) = φn(2A, 3B) = φn(A,B)2×3

= φn(A,B)6 = (105)6 mod 1009

= 394 mod 1009
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3.3 Modified Weil Pairing

As weil pairing is an efficient method to calculate pairing between two points

on the elliptic curve, but there are some limitations of weil pairing. When we

calculate the weil pairing between the same points or or between the multiple of

same points φn(sA, tA) where s, t ∈ Z+ always equal to 1. For example, let’s

say Alice, Bob and Charles want to communicate with each other. They selected

elliptic curve y2 = x3 + 37x over F1009 and point of order 7 (as in Example 3.2.5).

If Alice chooses A = (8, 703) , Bob chooses B = (417, 952) and Charles chooses

the C = (904, 920), then Where B = 2A and C = 3A . Pairing between Alice and

Bob is by using the ApCoCoA program given in Appendix A

φn(A,B) = ((8, 703), (417, 952)) = 1

Pairing between Alice and Charles is by using the ApCoCoA program given in

Appendix A

φn(A,C) = ((8, 703), (904, 920)) = 1

Similarly, pairing between Bob and Charles is:

φn(B,C) = ((417, 952), (904, 920)) = 1

From all above cases, note that φn(A,A) = 1 and by using the definition we have,

φn = (iA, jA)(A,A)ij = 1ij = 1 ∵ i, j ∈ N

That is, weil pairing between such points always results in a trivial answer. As we

discussed earlier, that we need non-degenerate mapping that satisfies the property

φn = (A,A) 6= 1
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So, to solve this issue we use modified form of weil pairing. Modified weil pairing

is defined as:

φ̂n(A,B) = φn(A, ω(B))

Where ω is distortion map [29] on elliptic curve.

Definition 3.3.1 (Distortion Map)

Let p ≥ 3 be a prime number,EF(a, b) be the elliptic curve, and A be the point in

EF(a, b). The distortion map is defined as: ω : EF(a, b) −→ EF(a, b) and satisfies

the condition.

• ω(mA) = mω(A) ∴ m ∈ N and A ∈ EF(a, b)

• φn(A, ω(B)) is the primitive nth root of unity, that is φn(A, ω(B))n = 1

The distortion mapping satisfies the following axioms:

1. Let p ≥ 3 be a prime number, EF(a, b) is the elliptic curve, and A be the

point in EF(a, b) . Let A be the point on EF(a, b) and distortion mapping on

EF(a, b)

ω : EF(a, b) −→ EF(a, b)

If B,B′ are the multiples of A

φ̂n(B,ω(B′)) = 1 ⇔ B = O or B′ = O (O is the point at infinity)

2. Let elliptic curve defined as y2 = x3 + 1 over Fp . Let β be the primitive

third cube root of unity. Where β 6= 1 and β3 = 1. The distortion mapping

is defined as ω(A) = ω(x1, y1) = (βx1, y1) and ω(O) = O.

3. If A ∈ EF(a, b) then ω(A) ∈ EF(a, b)
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4. ω satisfies the addition law that is:

ω(A) + ω(B) = ω(A+B) A, B ∈ EF(a, b) (3.20)

For proof of all axioms are available in [3].

Following are the results that define the field in which β lies.

Proposition 3.3.2 Let p be the prime and p ≡ 2 mod 3, Fp does not contain

primitive third root of unity but F2
p. [3]

For proof of proposition is available in [3].

As β 6= 1 but β3 = 1 this implies that β3−1 = 0 which is equal to (β−1)(β2 +β+

1) = 0 but we have the condition that β 6= 1 then it implies that β2 + β + 1 = 0

that implies β2 = −β − 1. From this fact we conclude that we use the extension

field F2
p having the irreducible polynomials in mod β2 + β + 1.

Now we give the example of modified weil pairing

Example 3.3.3 Choosing a = 0 and b = 1 and F = F29 in equation (3.8). Let

A = (8, 7) ∈ E29(0, 1) be the point of order 5. Then by using distortion mapping

ω(A) = (8β, 7). Using the above procedure that is use to calculate weil pairing (see

Example 3.2.5) one can calculate the modified weil pairing by following the steps

of miller Algorithm. By using ApCoCoA code defined in Appendix the Modified

Weil pairing is between A and ω(A).

φ̂n(A,A) = φn(A, ω(A))

φn = ((8, 7), (8β, 7)) = 15β + 10

Here we choose C = (0, 28) and work on field F 2
29

It is easy to verify that 15β + 10 is the 5th root of unity such that 15β + 105 ≡

1 mod 29 and the polynomial is reduced in mod β2 + β + 1



Chapter 4

Identity Based Broadcast

Encryption Scheme

In this chapter, we will briefly described the identity based broadcast encryption

scheme (IBBE). Then, we will review IBBE scheme introduced by Ming and Wang

[37].

4.1 Broadcast Encryption Scheme

The term Broadcast [9] refers to a form of system in which message is transmitted

in the form of video or audio contents. For example, FM radio is the first analogue

broadcasting system in which audio message is sent through airwaves.

In the view of cryptography, the idea of broadcast encryption is to perform single

encryption of message that can be decrypted by multiple recipients. Communica-

tion takes place between the center and the set of receivers. Set of receivers are

called privileged. The idea of broadcast encryption was first introduced by Fait and

Naor [22]. Their proposal is based on symmetric key cryptography. Later, public

key broadcast encryption was introduced [20]. The difference is that the public

key encryption scheme uses single recipient for communication whereas broadcast

scheme uses multiple recipients. More generally, in public key cryptography center

59
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provide public key to the recipients who join the system. When center encrypts

the message only privileged users can decrypt it. For security issues, no one from

outside of subset can decrypt the message. In literature there are many broadcast

encryption schemes have been proposed such as [5, 21, 25, 39]. One prominent class

of broadcast encryption scheme is the class of identity based broadcast encryption

scheme [44].

4.2 Identity Based Broadcast Encryption Scheme

Identity-based encryption schemes are public key cryptosystems that can use any

string as a public key of each receiver. If the public key broadcast encryption is

identity-based, senders are able to send ciphertexts to any set of receivers who had

never engaged any setup procedure with the system. This implies that its public

key size does not depend on the number of receivers.

Identity based broadcast encryption scheme (IBBE) is the generalized form of IBE

see Section 1.2. In IBE scheme the communication is between two or three parties,

but in IBBE scheme there is only one sender and multiple receivers. Similarly,

IBBE scheme consists of four algorithms that is used in IBE scheme. Let Ω be

the set of receiver and t be the maximum possible size of Ω.

1. Setup: Given t be the maximum possible size of set of identities Ω =

{ID1, ID2, ID3, . . . , IDm}. The private key generator (PKG) generate pub-

lic parameter PP and master key K as output. The master key K are kept

secret and PP include the information of plaintext spaceM′ and ciphertext

space C ′ that are made public.

2. Extract: Take PP , K and IDi ∈ Ω as input. PKG generates private key

KIDi
and send it to the corresponding user. Where i ∈ {1, 2, 3 . . .m}
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3. Encryption (E): Input: PP , message M and set of identities Ω

Output: The corresponding ciphertext C.

E(Ω,PP ,M)→ C

4. Decryption (D): Input: PP , IDi ∈ Ω and it’s corresponding private key

KIDi

Output: The corresponding message M .

D(PP ,Ω, IDi,KIDi
)→M

4.3 IBBE with group of prime order

In this section, we make the review of IBBE with group of prime order[37] this

scheme is introduced by Ming and Wang. The authors proposed bilinear paring

in prime order group. For the construction of IBBE, they use the pairing in

dual vector space [16] in prime order group. For security purpose, they use dual

system encryption scheme proposed by Waters [52]. Now, we start with some basic

definitions that are used in this technique.

Definition 4.3.1 (Bilinear Pairing)

Let G1, G2 be the two cyclic groups of prime order p and let g be the generator

of G1 the bilinear mapping φ is a map φ : G1 × G1 → G2 satisfies the following

properties:

1. Bilinear: Let u, v ∈ G1 and a, b ∈ Zp then φ(ua, vb) = φ(u, v)ab

2. Non-Degenerate: φ(g, g) 6= 1

3. Computable: There exist an efficient algorithm to compute the pairing

φ(u, v) for all u, v ∈ G1

For the construction, the authors use the tool called dual-pairing on vector space

[16] which is bilinear pairing on vector space. For a vector
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v = (v1, v2, . . . , vm) ∈ Zmp and g ∈ G1 we write gv for m-tuples of elements of G1

and Zmp denote the prime field of m-tuples[37].

gv = (gv1 , gv2 , . . . , gvm) (4.1)

The vector addition and scalar multiplication can also defined as follows in the

exponents.

gv+w = (gv1+w1 , gv2+w2 , . . . , gvm+wm) ∀v, w ∈ Zmp

gcv = (gcv1 , gcv2 , . . . , gcvm) ∀c ∈ Z∗p, v ∈ Zmp

Define the bilinear mapping φm on m-tuples of G1 by pairing component wise and

multiplying the result in G2. That is for v = (v1, v2, . . . , vm) and

w = (w1, w2, . . . , wm),

φm(gv, gw) = φ(gv1 , gw1) · φ(gv2 , gw2) . . . φ(gvm , gwm)

φ(g, g)v1w1+v2w2+···+vmwm = φ(g, g)v1w1 · φ(g, g)v2w2 · · ·φ(g, g)vmwm

= φ(g, g)v·w

where dot product · is calculated in modulo p. In this paper, they use dual

orthonormal basis that is defined as.

Definition 4.3.2 (Dual Orthonormal Bases)

Let B = {b1, b2, b3, . . . bm} and B∗ = {b∗1, b∗2, b∗3, . . . , b∗m} be the basis of Zmp . For

any finite value of m, B and B∗ are said to be dual orthonormal bases [40]. If it

satisfies the following condition.

bi · b∗j =

0 mod p if i 6= j

r mod p if i = j

(4.2)

Where r is a random element of Zp.

The set of pairs of dual orthonormal bases of dimensionm is denoted byDual(Zmp , r)
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where r is the dot product of the vectors bi and b∗i in Z∗p. That is, bi ·b∗i = r. Choos-

ing a random pair dual orthonormal bases from Dual(Zmp , r) will be denoted by

Dual(Zmp , r) −→ (B,B∗).

with the dual pairing vector space are equipped with orthonormal subspaces under

the pairs φm. In this way, the notion of subgroup is replaced by that of subspace in

the exponents. We get a workable analogue to prime-order subgroups of composite-

order groups by using dual pairing vector spaces. A result in [37] roughly states

that “If one starts by sampling a random pair of dual orthonormal based and

then applies a linear change of basis to a subset of basis vectors (maintaining the

orthonormal property), the resulting bases are also, distributed as random pair,

independent of change of basis that was applied” .

For the construction, we define that how this scheme change the bases. Thus starts

with a pair (B,B∗) of dual orthonormal bases over Zmp , let A ∈ Zm×mp (m ≤ t)

be an invertible matrix. Let Sm ⊆ [t] be the subset of size m. Let Bm denotes

an t × m matrix over Zp whose columns are vectors bi such that i ∈ Sm. Thus

Order(Bm)=t×m and Order(A)=m×m implies that Order(BmA)=t×m. Now,

BA is formed by retaining all vectors bi ∈ B for which i /∈ Sm and exchanging

all other bi’s (i ∈ Sm) with the columns of BmA. Similarly, B∗A is formed by

the retaining all the vectors b∗i ∈ B for which i /∈ Sm and exchange all other

bi’s(i ∈ Sm) with the columns of B∗m(A−1)T , where, as above, B∗m is t×m matrix

whose columns are the vectors b∗i ∈ B∗ such that i ∈ Sm and columns are the

vectors b∗i ∈ B∗ such that i ∈ Sm and (A−1)T is the transpose of the matrix A−1.

Now, we give the example to explain the procedure.

Example 4.3.3 Let we take p = 29, t = 3 and m = 2 so Ztp = Z3
29. Let

B = {(1, 2, 3), (2, 0, 1), (3, 1, 0)} be the basis of Z3
29. First of all, we will calculate

the orthonormal basis which satisfies the condition (4.2) where we choose r = 2 ∈

Z∗29 as random number. Let

B∗ = {(b∗11, b∗12, b∗13), (b∗21, b∗22, b∗23), (b∗31, b∗32, b∗33)}
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be the orthonormal basis. To find the orthonormal basis we multiply the compo-

nents of B with B∗ and make the following system of linear equation.
1b∗11 + 2b∗12 + 3b∗13 = 2

2b∗11 + 0b∗12 + 1b∗13 = 0

3b∗11 + 1b∗12 + 0b∗13 = 0

(4.3)

Transforming into the augmented form and reduce by reduce echelon form
b∗11

b∗12

b∗13

 =


1 2 3 | 2

2 0 1 | 0

3 1 0 | 0


Using the following row operation: (2R1 −R2), (3R1 −R3)

b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 4 5 | 4

0 5 9 | 6


Now multiplying the second row by inverse of 4 using extended euclidean inverse

see Section 2.5.14 i.e. (4)−1 = 22 mod 29, we get


b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 1 23 | 1

0 5 9 | 6


Using the following row operations: 5 ∗R2 −R3

b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 1 23 | 1

0 0 19 | 28

 mod 29
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Now, multiplying the third row by inverse of 19 i.e (19)−1 = 26.


b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 1 23 | 1

0 0 1 | 3

 mod 29

Using the following row operations: 23R3 −R2, 3R3 −R1
b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 1 23 | 1

0 0 19 | 28

 mod 29

Multiplying third row by inverse of 19 i.e (19)−1 = 26 (see Section2.5.14)


b∗11

b∗12

b∗13

 =


1 2 3 | 2

0 1 23 | 1

0 0 1 | 3

 mod 29

Use the following row operations: 23×R3 −R2, 3×R3 −R1.
b∗11

b∗12

b∗13

 =


28 27 0 | 7

0 28 0 | 10

0 0 1 | 3

 mod 29

Multiplying second row by inverse of 28 i.e (28)−1 = 28 (see Section2.5.14)


b∗11

b∗12

b∗13

 =


28 27 0 | 7

0 1 0 | 19

0 0 1 | 3

 mod 29
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Use the following row operation: 27 × R2 − R1 that will change the first row as

follow: 
b∗11

b∗12

b∗13

 =


1 0 0 | 13

0 1 0 | 19

0 0 1 | 3

 mod 29

Now the first component of B∗ is

b∗11 = 13 mod 29 b∗12 = 19 mod 29 b∗13 = 3 mod 29

Now, by multiplying the second component of orthonormal basis with all compo-

nent of basis we will get the following system of linear equation.
1b∗21 + 2b∗22 + 3b∗23 = 0

2b∗21 + 0b∗22 + 1b∗23 = 2

3b∗21 + 1b∗22 + 0b∗23 = 0

(4.4)

Similarly, by using the above procedure the second component of B∗ is

b∗21 = 19 mod 29 b∗22 = 1 mod 29 b∗23 = 22 mod 29

Similarly, the system of equation for third component of B∗ is
1b∗31 + 2b∗32 + 3b∗33 = 0

2b∗31 + 0b∗32 + 1b∗33 = 0

3b∗31 + 1b∗32 + 0b∗33 = 2

(4.5)

Therefore, we get

b∗31 = 3 mod 29 b∗32 = 22 mod 29 b∗33 = 23 mod 29
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Calculated orthonormal bases are as follow:

B = {(1, 2, 3), (2, 0, 1), (3, 1, 0)} B∗ = {(13, 19, 3), (19, 1, 22), (3, 22, 23)}

For verification we will calculate the dot product between the bases as follow:

(1, 2, 3) · (13, 19, 3) = 2 (1, 2, 3) · (19, 1, 22) = 0 (1, 2, 3) · (3, 22, 23) = 0

(2, 0, 1) · (13, 19, 3) = 0 (2, 0, 1) · (19, 1, 22) = 2 (2, 0, 1) · (3, 22, 23) = 0

(3, 1, 0) · (13, 19, 3) = 0 (3, 1, 0) · (19, 1, 22) = 0 (3, 1, 0) · (3, 22, 23) = 2

Now, applying the above procedure of change of bases as follow: Let bases are

written in form of vectors as follow:

B =




1

2

3

 ,
︸ ︷︷ ︸

b1


2

0

1

 ,
︸ ︷︷ ︸

b2


3

1

0


︸︷︷︸
b3

 B∗ =




13

19

3

 ,
︸ ︷︷ ︸

b∗1


19

1

22

 ,
︸ ︷︷ ︸

b∗2


3

22

23


︸ ︷︷ ︸

b∗3


Let t = 3, m = 2 Let A be the invertible matrix of order(A) = m ×m = 2 × 2

and we take Sm ⊂ [t] = S2 ⊆ [3] of size t = 2. As we take the subset S of

order 2 then it means that the possible entries we choose {(b1, b2), (b2, b3), (b1, b3)}

in the same way for orthonormal basis {(b∗1, b∗2), (b∗2, b∗3), (b∗1, b∗3)}. Now, we choose

vectors (b1, b2) and (b∗1, b
∗
2) and apply changes on only these two vectors this make

a rectangular matrix Bm = B2 of order m× t = 3× 2

A =

1 0

2 1

 ∈ Z2×2
29

B2 =


1 2

2 0

3 1
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B2A =


5 2

2 0

5 1

 mod 29

Now the first two vectors of B is change and equal to b1 = (5, 2, 5) and b2 = (2, 0, 1).

Therefore, matrix A is applied to change B to BA. As we take subset of Order = 2

only change the first two vectors of B so BA is formed by retaining vector b3 ∈ B

for which 3 /∈ S2 and we are exchanging all other bi’s (i ∈ S2) with the columns

of B2A where i = 1, 2

BA = B2A =


5 2 3

2 0 1

5 1 0

 mod 29

We get new basis as BA = {(5, 2, 5), (2, 0, 1), (3, 1, 0)} which are linearly indepen-

dent by using method define in 2.5.21

Now we will change the orthonormal basis by using the above procedure B∗A is

formed by multiplying the B∗2 by (A−1)T is the transpose of the matrix A−1. First

of all, we will calculate (A−1)T .

A−1 =

 1 0

27 0

 mod 29

(A−1)T =

1 27

0 1

 mod 29

B∗2 =


13 19

19 1

3 22



B∗2(A−1)T =


13 22

19 21

3 16

 mod 29
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Therefore, B∗A is

B∗A =


13 22 3

19 21 22

3 16 23

 mod 29

The new orthonormal basis are B∗A = {(13, 19, 3), (22, 21, 16), (3, 22, 23)}.

Checking the condition of orthonormal by taking dot product.

B∗A1
·BA1 = 2, B∗A1

·BA2 = 0, B∗A1
·BA3 = 0

B∗A2
·BA1 = 0, B∗A2

·BA2 = 2, B∗A2
·BA3 = 0

B∗A3
·BA1 = 0, B∗A3

·BA2 = 0, B∗A3
·BA3 = 2

4.4 Construction of IBBE Scheme

IBBE scheme consists of four algorithms. Before discussing the algorithm the

authors take some assumptions.

1. Assumption: For construction of IBBE scheme, let m = 6 and t denotes

the maximum number of set of possible users.

2. Setup: This algorithm is run by private key generator (PKG) which create

the whole IBBE environment. PKG creates master key K and public pa-

rameter PP for IBBE.

Input: Security parameter λ and bilinear mapping φ : G1×G1 → G2 where

G1 and G2 are the cyclic group of order prime p and orthonormal bases

D = (d1, d2 . . . , d6), D
∗ = (d∗1, d

∗
2 . . . , d

∗
6) ∈ Zmp

The system chooses randomly α, θ, σ ∈ Z∗p.

Output: Master key K

K = {gαθd∗1 , gθd∗1 , gθd∗2 , gσd∗3 , gσd∗4} (4.6)
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Where K is kept secret and public parameters are as follow.

PP = {G1,G2, g, p, φ(g, g)αθd1d
∗
1 , gd1 , gd2 , gd3 , gd4}

3. Extract: Input: Set of identities of size m i.e. Ω = {ID1, ID2, . . . , ID6},

PP and K

Private Key Generator (PKG) randomly chooses r11, r
2
1, . . . r

6
1, r

1
2, r

2
2, . . . r

6
2 ∈

Z∗p
Output: Two private keys K1 and K2 corresponding to any identity IDi ∈ Ω

where 1 ≤ i ≤ m.

K1 = gαθd
∗
1+r

i
1IDiθd

∗
1−ri1θd∗2+ri2IDiσd

∗
3−ri2σd∗4 (4.7)

K2 =



g(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+ID2+...,ID6)θd∗1 .

gr
i
1(ID1+ID2+···+IDi−1+IDi+1+...ID6)θd∗1 .

g−(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2 .

g(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+ID2+...,ID6)σd∗3 .

gr
i
2(ID1+ID2+···+IDi−1+IDi+1+···+ID6)σd∗3 .

g−(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4

(4.8)

4. Encrypt: Input: Message M , PP and IDi ∈ Ω where 1 ≤ i ≤ m for

which the private keys K1 and K2 has calculated.

Then center chooses randomly s1, s2 ∈ Z∗p.

Output: (C1, C2)

C1 = M.φ(g, g)αθs1d1·d
∗
1 (4.9)

C2 = gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4 (4.10)

5. Decrypt: Input: C = (C1, C2), PP and private keys K1, K2

Output: Message M .

M = C1/φ6(K1K2, C2) (4.11)
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φ6 calculates the bilinear pairing on 6-tuples between product of private keys

K1.K2 and C2.

6. Correctness: To check C1, C2 are valid one can do the following calcula-

tions.

φ6(K1K2, C2) = φ
(
(gαθd

∗
1+r

i
1IDiθd

∗
1−ri1θd∗2+ri2IDiσd

∗
3−ri2σd∗4)·

(g(r
1
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+...,ID6)θd∗1gr
i
1(ID1+···+IDi−1+IDi+1+...ID6)θd∗1

g−(r
1
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2g(r
1
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+...,ID6)σd∗3

gr
i
2(ID1+···+IDi−1+IDi+1+···+ID6)σd∗3g−(r

1
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4),

(gs1d1+s1(ID1,...,ID6)d2+s2d3+s2(ID1,...,ID6)d4)
)

Writing the above equation component wise, then we get

φ6(K1K2, C2) = φ((gαθd
∗
1+r

i
1IDiθd

∗
1g−r

i
1θd
∗
2g+r

i
2IDiσd

∗
3g−r

i
2σd
∗
4)·

(g(r
1
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+...,ID6)θd∗1+(ri1)(ID1+···+IDi−1+IDi+1+...ID6)θd∗1

g−(r
1
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2

g(r
1
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+...,ID6)σd∗3+r
i
2(ID1+···+IDi−1+IDi+1+···+ID6)σd∗3

g−(r
1
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4), (gs1d1+s1(ID1,...,ID6)d2+s2d3+s2(ID1,...,ID6)d4))

Now, writing them component wise such that the exponent having d∗1 is

written with d∗1

φ6(K1K2, C2) = φ((gαθd
∗
1+r

i
1IDiθd

∗
1

gθd
∗
1((r

1
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+...,ID6)+(ri1)(ID1+···+IDi−1+IDi+1+...ID6))

g−r
i
1θd
∗
2g−(r

1
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2gr
i
2IDiσd

∗
3

g(r
1
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+...,ID6)σd∗3+r
i
2(ID1+···+IDi−1+IDi+1+···+ID6)σd∗3

g−r
i
2σd
∗
4g−(r

1
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4),

(gs1d1+s1(ID1,...,ID6)d2+s2d3+s2(ID1,...,ID6)d4))
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Further simplify the terms and multiplying component wise (4.2) by using

the law of exponent which is stated as xi.xj = xi+j.

φm(K1K2, C2) = φ{

gθd
∗
1 [α+r

i
1(IDi+(ID1+···+IDi−1+IDi+1+...ID6))+(r11ID1+···+ri−1

1 IDi−1+IDi+r
i+1
1 IDi+1+···+r61ID6)]

gθd
∗
2 [−r

i
1−(r11+r

2
1+···+ri−1

1 +ri+1
1 +···+r61)]

gσd
∗
3 [r

i
2(IDi+(r12ID1+···+ri−1

2 IDi−1+IDi+r
i+1
2 IDi+1+···+r62ID6)+(ID1+···+IDi−1+IDi+1+···+ID6)]

gσd
∗
4 [−r

i
2−(r12+···+ri−1

2 +ri+1
2 +···+r62)],

(gs1d1+s1(ID1,...,ID6)d2+s2d3+s2(ID1,...,ID6)d4)}

φ6(K1K2, C2) = φ((gθd
∗
1(α+(ID1+ID2+···+ID6)(ri+((r11+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61))

gθd
∗
2(−(r11+r21+···+r61))gσd

∗
3((ID1+ID2+···+ID6))(ri2+(r12+r

2
2+···+r62))

gσd
∗
4(−(r12+r22+···+r62)), (gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4))

φ6(K1K2, C2) = φ((gθd
∗
1(α+(ID1+ID2+···+ID6)((r11+r

2
1+···+r61))

gθd
∗
2(−(r11+r21+···+r61))gσd

∗
3((ID1+ID2+···+ID6))((r12+r

2
2+···+r62))

gσd
∗
4(−(r12+r22+···+r62)), (gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4))

φ6(K1K2, C2) = φ(gθd
∗
1α+(ID1+ID2+···+ID6)(r11+r

2
1+···+r61)θd∗1

g−(r
1
1+r

2
1+···+r61)θd∗2g(ID1+ID2+···+ID6)(r12+r

2
2+···+r62)σd∗3

g−(r
1
2+r

2
2+···+r62)σd∗4 , (gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4))

Now, we will calculate the pairing between K1K2 and C2 by using (4.2), we

calculate the dot product of exponents dot product of exponents are written
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as

αθs1d
∗
1d1 + (r11 + r21 · · ·+ r61)(ID1 + ID2 + · · ·+ ID6)θs1d

∗
1 · d1

− (r11 + r21 · · ·+ r61)(ID1 + ID2 + · · ·+ ID6)θs1d
∗
2 · d2

+ (r12 + r22 · · ·+ r62)(ID1 + ID2 + · · ·+ ID6)σs2d
∗
3 · d3

− (r12 + r22 · · ·+ r62)(ID1 + ID2 + · · ·+ ID6)σs2d
∗
4 · d4

By using the condition of orthonormal (4.2) the dot product of same bases

is equal to r

αθs1d
∗
1d1 + (r11 + r21 · · ·+ r61)(ID1 + ID2 + · · ·+ ID6)θs1r

− (r11 + r21 · · ·+ r61)(ID1 + ID2 + · · ·+ ID6)θs1r

+ (r12 + r22 · · ·+ r62)(ID1 + ID2 + · · ·+ ID6)σs2r

− (r12 + r22 · · ·+ r62)(ID1 + ID2 + · · ·+ ID6)σs2r

After putting random r so some terms are cancel out so exponent are sim-

plified as

φ6(K1K2, C2) = φ(g, g)αθs1d
∗
1d1

which is the pairing of encryption.

4.5 Security Analysis

• Subspace assumption: given G1,G2, φ, p and orthonormal bases B =

(b1, b2, . . . , bm), B∗ = (b∗1, b
∗
2, . . . , b

∗
m) and pick randomly

g ∈ G1, η, β, τ1, τ2, τ3, µ1, µ2, µ3 ∈ Z∗p and U1 = gµ1b1+µ2bk+1+µ3b2k+1 ,U2 =

gµ1b2+µ2bk+2+µ3b2k+2 . . .

Uk = gµ1bk+µ2b2k+µ3b3k

Similarly, for 1 ≤ i ≤ k

Vi = gτ1ηb
∗
i+τ2βb

∗
k+i , Wi = gτ1ηb

∗
i+τ2βb

∗
k+i+τ3b

∗
2k+i
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Let D = (gb1 , gb2 , . . . , g2k, g3k+1, . . . , gbn

, gηb
∗
1 , . . . , gηb

∗
k , gβb

∗
k+1 , . . . , gηb

∗
2k , gb

∗
2k+1 , . . . , gb

∗
n , U1, U2, . . . , Uk, µ3)

It is very hard to distinguish between V1, V2 . . . , Vk and W1,W2 . . . ,Wk

• The security of the scheme relies on decisional linear assumption (DLIN),

Let G1, G2, φ, p and pick randomly g, f, h ∈ G1 and take c1, c2, w ∈ Zp and

compute T1 = gc1+c2 , T2 = gc1+c2+w. It is hard to distinguish between T1

and T2.

The construction of proposed scheme is based on DLIN that utilize subspace

assumption. As it is mentioned in [31] that “if the DLIN assumption holds,

subspace assumption also holds”.

4.5.1 Chosen Ciphertext Attack

By lemma [37] it is proof that IBBE scheme is secure against the chosen ciphertext

attack. IBBE scheme uses dual system encryption scheme that was first introduced

by Waters [32, 52] that has been emerged as the useful tool for achieving the full

security. In dual system encryption scheme the keys and ciphertext are of two

forms. Normal keys and normal ciphertext are used in the real IBBE system. But

semi-functional keys and semi-functional ciphertext are not used in real system.

They are only use in security proof. Namely, semi-functional and normal, these

keys and ciphertext have some properties.

1. Normal keys can decrypt both form of ciphertexts (semi-functional or nor-

mal).

2. Semi-functional keys can also decrypt both form of ciphertexts (semi-functional

or normal).

3. Normal ciphertext can be decrypted from semi-functional keys.

4. Semi-functional ciphertext can be decrypted from normal keys.

5. When semi-functional key is use to decrypt the semi-functional ciphertext

then decryption will fail.
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By using the definition, when adversary will chose the ciphertext due to random

parameter it is very difficult for him to differentiate between semi-functional ci-

phertext and normal ciphertext. When he decrypt the semi-functional ciphertext

with semi-functional key then decryption will fail. By using this technique the

IBBE is secure against the chosen ciphertext attack.

For this IBBE scheme we provide the definition of semi-functional key and cipher-

text which are as follow.

1. Semi-functional Keys Using the construction of IBBE scheme, PKG

construct (K1,K2) that are the normal keys. Then take the random number

t5, t6, t
′
5, t

′
6 so the semi-functional keys are given below:

K′1 = K1.g
t5d∗5+t6d

∗
6 (4.12)

K′2 = K2.g
t
′
5d
∗
5+t
′
6d
∗
6 (4.13)

2. Semi-Functional Ciphertexts: Firstly, calculate the normal ciphertext

(C1, C2) from the encrypt algorithm as defined above then calculation of

semi-functional cipher text are as follow:

C
′

1 = C1 = M.φ(g, g)αθs1d1d
∗
1 (4.14)

C
′

2 = C2.g
z5d5+z6d6 (4.15)

Where z5, z6 selected randomly from Z∗p

4.5.2 Chosen Plaintext Attack

For proving that an IBBE scheme is secure against the chosen plaintext attack

we proceed through the four lemmas that are defined in [37]. All lemmas using

the game between the Algorithm A which is run by adversary and Algorithm

B which is run by PKG. Note that the all games are probabilistic and depends

upon the chance that the adversary A has guess the correct ciphertext. The first
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lemma is also divided into two parts if Algorithm B produced normal ciphertext

on the queries on adversary A then this lemma is called real security game and if

B produce the semi-functional ciphertext on the queries of A then it is called as

Game0. In lemma 2,3 and 4 algorithm B change p number of private key one by

one to semi-functional and in last lemma B make semi-functional private key at

that time the A decrypt the semi-function ciphertext with semi-functional key so

the decryption will fail. Now first of all we summarizing Lemma 1.

Lemma 4.5.1 The Algorithm B is given

D = (gb1 , gb2 , gb3 , gb4 , gηb
∗
1 , gηb

∗
2 , gηb

∗
3 , gηb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, µ3)

and T1 and T2. The goal of B is to decide whether T1 = gτ1ηb
∗
1+τ2βb

∗
3+τ3b

∗
5 and

T2 = gτ1ηb
∗
2+τ2βb

∗
4+τ3b

∗
6 or T1 = gτ1ηb

∗
1+τ2βb

∗
3 and T2 = gτ1ηb

∗
2+τ2βb

∗
4 .

The system changes it’s basis by choosing the invertible matrix A ∈ Z2×2
p and

define the new orthonormal basis as

F = (f1, f2, f3, f4, f5, f6) and F ∗ = (f ∗1 , f
∗
2 , f

∗
3 , f

∗
4 , f

∗
5 , f

∗
6 ) as follow.

f1 = ηb∗1, f2 = ηb∗2, f3 = βb∗3 f4 = βb∗4, f5 = b∗5, f6 = b∗6

f ∗1 = η−1b1, f
∗
2 = η−1b2, f

∗
3 = β−1b3 f4 = β−1b4, f

∗
5 = b5, f

∗
6 = b6

Now we apply matrix A to change the basis matrix to f5, f6 and (A−1)T change

the basis matrix to f ∗5 , f
∗
6 and B set original basis D = FA and D∗ = F ∗A.

Now the B chooses some random number α′, θ′, σ′ and sets θ = θ′η, σ = σ′β,

and calculate the master key as K = {gαb1θ′ , gb1θ′ , gb2θ′ , gb3σ′ , gb4σ′}

Now the adversary A target identity IDi ∈ Ω. The B generate the K1, K2 by

using extract algorithm and send it to adversary A.

The A has two outputs M0 and M1 and challenge set Ω∗ = {ID∗1, ID∗2, . . . ID∗m.

Then B chooses a bit b ∈ {0, 1} and compute the ciphertexts as.

C1 = Mb.φ(T1, g
b1)αθ

′
and C2 = T1.(T2)

ID∗1 ,ID
∗
2 ,...,ID

∗
n

A continue to issue the queries on all IDi but constraint that IDi /∈ Ω∗. At the

end, A guess a bit b′ and obtain the correct ciphertext if b′ = b
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If T1 = gτ1ηb
∗
1+τ2βb

∗
3 and T2 = gτ1ηb

∗
2+τ2βb

∗
4 (where η, β, τ1, τ2 are chosen randomly)

then C = (C1, C2) is the normal ciphertext and if the ciphertext is normal then

game is called real security game. If T1 = gτ1ηb
∗
1+τ2βb

∗
3+τ3b

∗
5 and T2 = gτ1ηb

∗
2+τ2βb

∗
4+τ3b

∗
6

then C = (C1, C2) is the semi-functional ciphertexts if the ciphertext is semi-

functional then it is Game0.

Now, after simulating Game0 proceeding further and summarizing Lemma 2,

Lemma 3 and Lemma 4 of [37] in which we change the p (order of group) number

of private keys and one by one to semi-functional so in this way the adversary

A cannot decrypt semi-functional ciphertext that is calculated in Game0 with

semi-functional key.

Lemma 4.5.2 Proceeding in the same way as above, the algorithm B is given

the same parameters as in lemma 1 and also goal of B is same as in lemma 1. The

system changes it’s basis by choosing the invertible matrix A ∈ Z2×2
p and define

the orthonormal basis as d1 = b1, d2 = b2, d3 = b3, d4 = b4, d
∗
1 = b∗1, d

∗
2 = d∗2, d

∗
3 =

b∗3, d4 = b∗4

Now we apply matrix A to change the basis matrix to d5, d6 and (A−1)T change

the basis matrix to d∗5, d
∗
6 and B set original basis D = BA and D∗ = B∗A.

Setup generate the master key as K = {gαηb∗1 , gηb1 , gηb∗2 , gβb∗3 , gβb∗4} and adversary

chooses IDi ∈ Ω then B set (k,m) = (2, 6) then following possibilities take place.

• If i < k, challenger start the extract algorithm and generate the normal

keys for IDi. As system knows the gb
∗
5 and gb

∗
6 where b∗5, b

∗
6 are the compo-

nent of basis. It can also generate semi-functional keys by taking the linear

combination of gb
∗
5 and gb

∗
6 .

• If i > k, challenger start the extract algorithm and generate the normal keys

for IDi.

• If i = k, B randomly chooses r11, r
2
1, . . . r

m
1 , r

1
2, r

2
2, . . . r

m
2 ∈ Z∗p then keys are

calculated as follow:

K1 = (gηb
∗
1)αT IDi

1 T−12
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K2 =



(gηb
∗
1)(r

1
1+r

2
1+...r

m
1 )(ID1+ID2+...,IDm).

(gηb
∗
2)−(r

1
1+r

2
1+...r

m
1 ).

(gβb
∗
3)(r

1
2+r

2
2+...r

m
2 )(ID1+ID2+...,IDm).

(gβb
∗
4)−(r

1
2+r

2
2+...r

m
2 ).T

(ID1+ID2+...,IDm)
1

If T1 = gτ1ηb
∗
1+τ2βb

∗
3 and T2 = gτ1ηb

∗
2+τ2βb

∗
4 (where η, β, τ1, τ2 are chosen ran-

domly) then C = (C1, C2) is the normal keys. If T1 = gτ1ηb
∗
1+τ2βb

∗
3+τ3b

∗
5 and

T2 = gτ1ηb
∗
2+τ2βb

∗
4+τ3b

∗
6 then C = (C1, C2) is the semi-functional keys.

The A has two outputs M0 and M1 and challenge set Ω∗ = {ID∗1, ID∗2, . . . ID∗m.

Then B chooses a bit b ∈ {0, 1} and compute the semi-functional ciphertexts as.

C1 = Mb.φ(gηb
∗
1 , U1)

α and C2 = U1.(U2)
ID∗1 ,ID

∗
2 ...ID

∗
m

A continue to issue queries on IDi ∈ Ω and finally end the algorithm with guess

a bit b′ guesses the ciphertext if b′ = b.

In lemma 3 and 4 the assumption is (k,m) = (1, 6) and the game is same as above

but the only change is that here it take U1 and calculate the polynomial T1.

Lemma 4.5.3

The B is given D = (gb1 , gb2 , gb4 , gb5 , gb6 , gηb
∗
1 , gβb

∗
2 , gb

∗
3 , gb

∗
4 , gb

∗
5 , gb

∗
6 ,

U1 = gµ1b1+µ1b2+µ1b3 , µ3). The goal of B is decided whether T1 = gτ1ηb
∗
1+τ2βb

∗
2 or

T1 = gτ1ηb
∗
1+τ2βb

∗
2+τ3b

∗
3

First of all, B choose the invertible matrix A ∈ Z2×2
p and define the bases as

d1 = b∗6, d2 = b∗3, d3 = b∗5, d4 = b∗4, d5 = b∗2, d6 = b∗1,

d∗1 = b6, d
∗
2 = b3, d

∗
3 = b5, d

∗
4 = b4, d

∗
5 = b2, d

∗
6 = b1

Now B chooses θ, σ, α ∈ Z∗p and send the public parameters PP to A. Now,

adversary issues the queries on IDi ∈ Ω and challenger calculates the private keys

for every IDi. B chooses the random values ri
′
1 , t
′
5, t
′
6, t
′′
5, t
′′
6, r

1
1, r

2
1, . . . r

i−1
1 , ri+1

1

. . . , rm1 , r
1
2, r

2
2, r

3
2 . . . , r

m
2 ∈ Z∗p and calculate the keys as follow.

K1 = (U1)
(−θri′1 )θ(gb6)(α+µ3r

′
1IDi)θ(gb5)r

i
2IDiσ(gb4)−r

i′
2 σ(gb2)t

′
5 .(gb1)t

′
6
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K2 = (gb6)(r
1
1 ,r

2
1 ,...r

i−1
1 ,ri+1

1 ...rm1 )(ID1,ID2,...IDm)θ.

(gb6)µ3r
i′
1 (ID1,ID2,...IDi−1+IDi+1...IDm)θ.

(U1)
−(r11 ,r21 ,...r

i−1
1 ,ri+1

1 ...,rm1 )θ/µ3 .

(gb5)(r
2
2 ,r

3
2 ,...r

i−1
2 ,ri+1

2 ...,rm2 )(ID1,ID2,...IDm)σ

(gb5)(r
i
2)(ID1,ID2,...IDi−1+IDi+1...,IDm)σ

(gb6)−(r
1
2 ,r

2
2 ...r

i−1
2 ,ri+1

2 ...,rm2 )σ.(gb2)t
i′′
5 .(gb1)t

′′
6

The A has two outputs M0 and M1 and challenge set Ω∗ = {ID∗1, ID∗2, . . . ID∗m.

Then B chooses a bit b ∈ {0, 1} and compute the semi-functional ciphertexts

choosing s1, s2Z∗p

C1 = Mb.φ(gg,g, U1)
αθs1 and

C2 = (gb
∗
6)s1(g

b∗3)s1(ID
∗
1 ,ID

∗
2 ...,ID

∗
m)(gb

∗
5)s2(gb

∗
4)s2(ID

∗
1 ,ID

∗
2 ...,ID

∗
m)T1

If T1 = gτ1ηb
∗
1+τ2βb

∗
2 = gτ1ηb

∗
5+τ2βb

∗
6 then exponent of T1 is the linear combination of

d5 and d6 this make the semi-functional ciphertext. If

T1 = gτ1ηb
∗
1+τ2βb

∗
2+τ3b

∗
3 = gτ1ηb

∗
6+τ2βb

∗
5+τ3b

∗
2

then τ3 randomize d2 and making the semi functional ciphertext.

Lemma 4.5.4 The same procedure is follow in Lemma 4 but only that the

system change the bases as follow:

d1 = b∗3, d2 = b∗4, d3 = b∗5, d4 = b∗6, d5 = b∗1, d6 = b∗2

d∗1 = b3, d
∗
2 = b4, d

∗
3 = b5, d

∗
4 = b6, d

∗
5 = b1, d

∗
6 = b2

The A make queries about IDi ∈ Ω and B chooses random integers same as above.

Therefore, the keys are calculated as follow:

K1 = (U1)
(α′+r′1IDi)θ(gb4)−r

i′
1 µ3θ(gb5)r

i
2IDiσ(gb6)−r

i′
2 σ(gb1)t

′
5 .(gb2)t

′
6



IBBE 80

K2 = (U1)
(r11 ,r

2
1 ,...r

i−1
1 ,ri+1

1 ,...,rm1 )(ID1,ID2,...IDm)θ/µ3 .

(U1)
µ3ri

′
1 (ID1,ID2,...,IDi−1,IDi+1,...IDm)θ5.

(gb4)−(r
1
1 ,r

2
1 ,...r

i−1
1 ,ri+1

1 ,...,rm1 )θ.

(gb5)(r
1
2 ,r

2
2 ...r

i−1
2 ,ri+1

2 ,...,rm2 )(ID1,ID2,...IDn)σ

(gb5)(r
i
2)(ID1,ID2,...,IDi−1,IDi+1,...,IDm)σ

(gb6)−(r
1
2 ,r

2
2 ...r

i−1
2 ,ri+1

2 ,...,rm2 )σ.(gb1)t
′′
5 .(gb2)t

′′
6

The A output two challenge message M0, M1 and challenge set ψ . Then B choose

b ∈ {0, 1} ,s1, s2, ω ∈ Z∗p . therefore it sets the semi-functional ciphertexts of Mb.

C1 = Mbφ(gb4 , gb
∗
4)

C2 = (gb
∗
3)s1 .(gb

∗
4)ω.(gb

∗
5)s2 .(gb

∗
6)s2(ID1,ID2,...IDn).T1

A continue to issue private keys query on IDi but A is not allowed to generates

queries for IDi ∈ Ω∗. A guess b′ and wins the game if b′ = b.

If T1 = gτ1ηb
∗
1+τ2βb

∗
2 = gτ1ηd

∗
5+τ2βd

∗
6 then exponent of T1 is the linear combination of

d5 and d6 this make the semi-functional ciphertext.

If T1 = gτ1ηb
∗
1+τ2βb

∗
2+τ3b

∗
3 = gτ1ηd

∗
5+τ2βd

∗
6+τ3d1 then exponent of T1 is the linear com-

bination of d5 and d6 this make the semi-functional ciphertext.

From the all above discussion we conclude that the IBBE scheme is secure against

chosen plaintext attack having negligible advantage that adversary gain in real

security game.

4.5.3 Analysis and Conclusion

The authors compare the efficiency and security of four schemes[17, 24, 41, 53]

with their proposed scheme [37]. They analysis is summarized.

• Identity-based broadcast encryption with constant size cipher-

texts and private keys Scheme: The system parameters size depend
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upon the maximum number of receivers t but the private key and ciphertext

size are constant. This scheme does not provide full security in group of

prime order and uses the D-GDHE assumption see literature [17].

• Adaptive security in broadcast encryption systems (with short ci-

phertexts) scheme: Authors provide three schemes of IBBE, we label

them as S1, S2, S3. In S1 scheme, size of system parameter and private key

depend upon the maximum possible size of receivers but having constant

size ciphertext. It does not provide the full security in group of prime order

and uses decision-BDHE assumption see literature [24]. In S2 scheme, size

of system parameters depend upon the maximum possible size of receivers

but having constant size ciphertext and private keys. It does not provide the

full security in group of prime order and uses decision-BDHE assumption see

literature [24]. In S3 scheme, size of system parameters depend upon the

maximum possible size of receivers but having constant size of private key

and the execution time of ciphertext grow slowly with the maximum possible

size of receivers. It provides the full security in group of prime order and

uses decision-BDHE assumption see literature [24].

• Fully CCA secure identity based broadcast encryption without

random oracles scheme: The size system parameters and ciphertext space

are constant but the size of private key depends upon the maximum number

of receivers |Ω|. This scheme provide full security in group of prime order

and uses D-TBDHE assumption see literature [41].

• Adaptively secure identity-based broadcast encryption with con-

stant size private keys and ciphertexts from the subgroups scheme:

The size of system parameters depend upon the maximum number of re-

ceivers t but the private key and ciphertext size are constant. This scheme

provide full security in composite order group using SD assumption see lit-

erature [53].

• Identity Based Broadcast Encryption with Group of Prime Order

scheme: The size of system parameters, private keys and ciphertext are
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constant. It provides the full security in the group of prime order using

decisional linear assumption.

From the analysis, it is concluded that the proposed scheme [37] is secure and

achieve constant size system parameter which means that execution of algorithm

does not depends on the time or execution time is constant.



Chapter 5

Implementation of Identity Based Broadcast

Encryption Scheme using Weil pairing

In this chapter, we will discuss the implementation of Yang’s scheme[37]. For this

purpose, we aim to use modified weil pairing [34] together with group of points

on an elliptic curve EFp(a, b). We explain the implementation by a toy example.

Implemented code is given in Appendix.

5.1 Our construction

In this Section, we will built an example of IBBE scheme that is defined in Chapter

4. For this purpose, first we will choose the bilinear mapping that is used in

Yang’s IBBE scheme [37]. The good example of bilinear mapping is weil pairing

as discussed in Chapter 3. So, we will implement weil pairing in computer algebra

system ApCoCoA [1] and with the help of this code we will implement weil and

IBBE scheme.

5.1.1 Assumptions

In this Section, we discuss assumption that is helpful in developing the example.

83
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1. We select the field Fp = Zp of order prime p where p satisfying the condition

p = 2 mod 3.

2. We define elliptic curve by the equation y2 = x3 + 1 over field Zp.

3. Let A ∈ EFp(a, b) be the point of order q =
(p+ 1)

6
where q > 3 be the some

prime factor of p + 1 and q satisfies the condition q | p + 1 but q2 - p + 1.

Here we denote G1 be the subgroup of point generated by A.

4. Now we choose extension field Fp2 by using the fact that 1 6= β ∈ Fp2 but

β3 = 1 that defines the mapping ω(x1, y1) = (βx1, y1). Note that

ω(A) ∈ EFp2
(0, 1) but ω(A) /∈ EFp(0, 1)

.

5. We take G2 be the subgroup of Fp2 containing all elements of order

q =
(p+ 1)

6
which is the group that contains all irreducible polynomials in

mod β2 + β + 1

6. When we discuss weil pairing on Fp2 its mapping is defined as

φ : EFp(a, b)× EFp(a, b) −→ G2

and modified weil pairing is defined as φ̂n : G1×G2 −→ G2 which is defined

as:

φ̂n(A,A) = φn(A, ω(A))

Now we give the an example of prime order group that we use in our construction

Example 5.1.1 We choose p = 29 that satisfies the condition p = 2 mod 3.

Now we choose prime number q = 5 which is the order subgroup G1 and satisfying

q =
p+ 1

6
=

30

6
= 5 also check that q = 5 is prime factor of p + 1 and 5 | 30 but

25 - 30.

Using these facts we take field Fp = F29 and subgroup is E5(0, 1) and elliptic curve
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is defined by equation y2 = x3 + 1. Let G1 be the subgroup of F29 having order 5.

Here we take G2 is also group of order q which is the subgroup of field extension

F292 taking mod β2 + β + 1. So the mapping defined as:

φ̂n : G1 ×G1 −→ G2

We choose A = (8, 7) ∈ E29(0, 1) is the point of order q = 5

Now, we calculate the Modified weil pairing using ApCoCoA tool see Appendix.

φ̂5((8, 7), (8, 7)) = φ5((8, 7), φ((8, 7))) = φ5((8, 7), (8β, 7)) = 15β + 10

where (15β + 10)5 = 1 mod p

Here we choose C = (0, 28).

Before going to construct the example, we will verify the properties that are used

in Ming and Wang’s IBBE scheme [37].

1. Bilinear Mapping: In IBBE the bilinear mapping is defined as, let u, v ∈

G1 and a, b ∈ Zp then φ(ua, vb) = φ(u, v)ab. But, we will use G1 = EF(a, b)

and elliptic curve is addition group so exponent is written as

φ(au, bv) = φ(u, v)ab

. For example, let a = 2, b = 3 then u = v = (8, 7) therefore,

φ(2(8, 7), 3(8, 7)) = φ((8, 7), (8, 7))2·3

φ((4, 23), (4, 6)) = φ((8, 7), (8, 7))6

15β + 10 = 15β + 10

2. Non-Degenerate: φ(g, g) 6= 1, As we use elliptic curve so we take g = (8, 7)

and modified weil pairing. Therefore, φ((8, 7), (8, 7)) = 15β + 10 6= 1.
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3. Let v = (v1, v2 . . . , vm) and g ∈ G1 and gv is m-tuple of element of G1. In

elliptic curve these m-tuples is equal to

gv = {gv1 , gv2 , . . . , gv1} = {v1g, v2g, . . . , vmg}

. For example, let v = (2, 3) and g = (8, 7) so

{(8, 7)2, (8, 7)3} = {2(8, 7), 3(8, 7)}

.

Now, we discuss how our weil pairing is work on Ming and Wang IBBE scheme.

5.1.2 Example 1

IBBE has four algorithm that is discussed in Chapter 4

1. Setup: Setup algorithm calculate the master key of IBBE system. For that

purpose we take m = 6, the number of receivers, now we assume that PKG

first chooses standard bases of Z6
29.

D = {(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)} = D∗

Here D is basis and D∗ is orthonormal basis of system both bases are equal

to each other and satisfies the condition.

b∗i · (bj) =

0 mod p if i 6= j

r mod p if i = j

Where p = 29 and as we take the standard bases then r = 1 otherwise r is

any random number belongs to Z∗p.

Now, master key that is defined as

K = {gαθd∗1 , gθd∗1 , gθd∗2 , gσd∗3 , gσd∗4}
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We will choose α = 2, θ = 4, σ = 7 ∈ Z∗29 .

First we will calculate the public parameters that are made to be public and

defined as

PP = {G1,G2, g, p, φ(g, g)αθd1d
∗
1 , gd1 , gd2 , gd3 , gd4}

In this example pubic parameter are

PP = {G1 = E29(0, 1),G2 = F292 , g = (8, 7), p = 29,

φ(g, g)αθd1d
∗
1 = φ((8, 7), (8, 7))2×4(1,0,0,0,0,0)(1,0,0,0,0,0) = 12β + 3,

gd1 = (8, 7)(1,0,0,0,0,0) = {((8, 7),O,O,O,O,O), }

gd2 = g(0,1,0,0,0,0) = {O, (8, 7),O,O,O,O}

gd3 = g(0,0,1,0,0,0) = {O,O, (8, 7),O,O,O},

gd4 = g(0,0,0,1,0,0) = {O,O,O, (8, 7),O,O}

Therefore, calculation for master key is

K = {(8, 7)(2)(4)(1,0,0,0,0,0), (8, 7)(4)(1,0,0,0,0,0), (8, 7)(4)(0,1,0,0,0,0)

, (8, 7)(7)(0,0,1,0,0,0), (8, 7)(7)(0,0,0,1,0,0)}

K = {(8, 7)(8,0,0,0,0,0), (8, 7)(4,0,0,0,0,0), (8, 7)(0,4,0,0,0,0), (8, 7)(0,0,7,0,0,0), (8, 7)(0,0,0,7,0,0)}

Now, using the scalar multiplication of elliptic curve, the above equation is

written as:
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K = {(8(8, 7), 0(8, 7), 0(8, 7), 0(8, 7), 0(8, 7), 0(8, 7)),

(4(8, 7), 0(8, 7), 0(8, 7), 0(8, 7), 0(8, 7), 0(8, 7)),

(0(8, 7), 4(8, 7), 0(8, 7), 0(8, 7), 0(8, 7), 0(8, 7)),

(0(8, 7), 0(8, 7), 7(8, 7), 0(8, 7), 0(8, 7), 0(8, 7)),

(0(8, 7), 0(8, 7), 0(8, 7), 7(8, 7), 0(8, 7), 0(8, 7))}

K = {((4, 6),O,O,O,O,O), ((8, 22),O,O,O,O,O),

(O, (8, 22),O,O,O,O), (O,O, (4, 23),O,O,O),

(O,O,O, (4, 23),O,O)}

2. Extract: Now the system calculate the private key of the corresponding

identity. For this we take set of Identities Ω = {2, 5, 7, 3, 14, 13} and PKG

randomly chooses

r11, r
2
1, r

3
1, r

4
1, r

5
1, r

6
1 = 4, 3, 7, 9, 2, 6 ∈ Z∗29

r12, r
2
2, r

3
2, r

4
2, r

5
2, r

6
2 = 6, 4, 2, 13, 8, 1 ∈ Z∗29

K1 is defined as

K1 = gαθd
∗
1+r

i
1IDiθd

∗
1−ri1θd∗2+ri2IDiσd

∗
3−ri2σd∗4

Let i = 1 so pick up first identity ID1 = 2 ∈ Ω and r11 = 4, r12 = 6

K1 = (8, 7)(2)(4)(1,0,0,0,0,0)+(4)(2)(4)(1,0,0,0,0,0)−(4)(4)(0,1,0,0,0,0)

(8, 7)(6)(2)(7)(0,0,1,0,0,0)−(6)(7)(0,0,0,1,0,0)

Simplifying, the exponents we will get

K1 = (8, 7)(8,0,0,0,0,0)+(32,0,0,0,0,0)+(0,−8,0,0,0,0)+(0,0,84,0,0,0)+(0,0,0,−42,0,0)

K1 = (8, 7)(40,−16,84,−42,0,0)
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Using the scalar multiplication of elliptic curve, above equation can be writ-

ten as

K1 = (40(8, 7),−16(8, 7), 84(8, 7),−42(8, 7), 0(8, 7), 0(8, 7))

K1 = {O, (8, 22), (8, 22), (4, 6),O,O}

K2 is defined as

K2 =



g(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+ID2+...,ID6)θd∗1 ·

gr
i
1(ID1+ID2+···+IDi−1+IDi+1+...ID6)θd∗1 ·

g−(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2 ·

g(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+ID2+...,ID6)σd∗3 ·

gr
i
2(ID1+ID2+···+IDi−1+IDi+1+···+ID6)σd∗3 ·

g−(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4

Putting values

K2 =



(8, 7)(3+7+9+2+6)(2+5+7+3+14+13)(4)(1,0,0,0,0,0) Skiping the r11 = 4

.(8, 7)(4)(5+7+3+14+13)(4)(1,0,0,0,0,0) Skiping the ID1 = 2

.(8, 7)−(3+7+9+2+6)(4)(0,1,0,0,0,0) Skiping the r11 = 4

.(8, 7)(4+2+13+8+1)(2+5+7+3+14+13)(7)(0,0,1,0,0,0) Skiping the r12 = 6

.(8, 7)(3)(5+7+3+14+13)(7)(0,0,1,0,0,0) Skiping the ID1 = 2

.(8, 7)−(4+2+13+8+1)(7)(0,0,0,1,0,0) Skiping the r12 = 6

Adding the identities and random number series of ri1 and ri2, where 1 ≤ i ≤

m

K2 = (8, 7)(27)(44)(4)(1,0,0,0,0,0).(8, 7)(4)(42)(4)(1,0,0,0,0,0)

.(8, 7)−(27)(4)(0,1,0,0,0,0).(8, 7)(28)(44)(7)(0,0,1,0,0,0)

.(8, 7)(3)(42)(7)(0,0,1,0,0,0).(8, 7)−(28)(7)(0,0,0,1,0,0)
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Now, adding them component wise

K2 = (8, 7)(5424,−108,10388,−196,0,0)

Writing the above equation as scalar multiple of point, and using scalar

multiplication of elliptic curve, we will get

K2 = {5424(8, 7),−108(8, 7), 10388(8, 7),−196(8, 7), 0(8, 7), 0(8, 7)}

K2 = {(8, 22), (4, 23), (4, 6), (8, 22)O,O}

Similarly, by using the above procedure one can calculate private keys for

all other identities Ω = {5, 7, 3, 14, 13}

3. Encrypt: Choose s1 = 21, s2 = 6 ∈ Z∗29 and take message M = 16. Cipher-

text C1 is defined as:

C1 = M.φ(g, g)αθs1d1·d
∗
1

For calculation of C1 we need to calculate the bilinear mapping φ. As we

use the modified weil pairing and choose point (8, 7) of order 5. Therefore,

we calculate φ̂n(A,A) = φ̂5((8, 7), (8, 7)). Then putting the values in (4.9),

we get.

C1 = 16.φ̂5((8, 7), (8, 7))(2)(4)(21)(1,0,0,0,0,0)(1,0,0,0,0,0)

Using ApCoCoA tool the modified weil pairing φ̂5((8, 7), (8, 7)) = (15β+10)

C1 = 16.(15β + 10)(2)(4)(21)(1,0,0,0,0,0)(1,0,0,0,0,0)
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Multiplying the exponent and taking the dot product of exponents and re-

duced it into mod 29.

C1 = 16.((15β + 10)168 mod β2 + β + 1) mod 29

C1 = 16.(12β + 3) mod 29

C1 = 18β + 19 mod 29

Now C2 is defined as

C2 = gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4

Putting values, we get

C2 = (8, 7)(21,0,0,0,0,0)+(21)(2+5+7+3+14+13)(0,1,0,0,0,0).

(8, 7)(6)(0,0,1,0,0,0)+(6)(2+5+7+3+14+13)(0,0,0,1,0,0)

C2 = (8, 7)(21,924,6,264,0,0) mod 29

Therefore, using scalar multiplication of elliptic curve above equation can be

rewritten as

C2 = (21(8, 7), 924(8, 7), 6(8, 7), 264(8, 7), 0(8, 7), 0(8, 7)) mod 29

C2 = {(8, 7), (8, 22), (8, 7), (8, 22),O,O}

4. Decrypt: Message decryption is define as M = C1/φ6(K1K2, C2). For de-

cryption, we use both decryption keys and ciphertexts that is calculated as

below.

K1 = {O, (8, 22), (8, 22), (4, 6),O,O}

K2 = {(8, 22), (4, 23), (4, 6), (8, 22),O,O}

C1 = 18β + 19 mod 29

C2 = {(8, 7), (8, 22), (8, 7), (8, 22),O,O}
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From the definition of message decryption, first of all we will calculate the

denominator, for that purpose we need to calculate the product of pairing

that is denoted by φm = φ6 between both decryption keys and ciphertext C2

as defined as φ5(K1K2, C2).

But, elliptic curve is group of addition so we will add both keys K1 +K2 by

using addition Algorithm 3.1.1

K1 +K2 = ((8, 22), (8, 7), (4, 23), (4, 23),O,O)

We use the modified weil pairing between keys K1 + K2 and ciphertext C2

which is denoted by φ̂m = φ̂6. Applying the pairing component wise between

six tuples

φ̂6(K1 +K2, C2) =

φ̂((8, 22), (8, 7)).φ̂((8, 7), (8, 22)).φ̂((4, 23), (8, 7)).

φ̂((4, 23), (8, 22)).φ̂(O,O).φ̂(O,O)

Applying the definition of modified weil pairing, we get

φ(K1 +K2, C2) =

φ̂((8, 22), (8β, 7)).φ̂((8, 7), (8β, 22)).φ̂((4, 23), (8β, 7)).

φ̂((4, 23), (8β, 22)).φ̂(O,O).φ̂(O,O)

Using ApCoCoA code, we will calculate the modified weil pairing (see Ap-

pendix B).

φ(K1 +K2, C2) = ((14β + 24) · (14β + 24) · (17β + 20)·

(12β + 3) · (1) · (1) mod β2 + β + 1) mod 29

φ(K1 +K2, C2) = −76896β − 96132 mod 29

φ(K1 +K2, C2) = 12β + 3

By putting values, we get

M = (18β + 19)/(12β + 3)



Implementation of IBBE using weil pairing 93

Using extended euclidean Algorithm 2.5.14, we have (12β+3)−1 = (17β+20).

So, message will be

M = ((18β + 19) ∗ (17β + 20) mod β2 + β + 1) mod 29

M = 377β + 74 mod 29

M = 16 mod 29

5.1.3 Example 2

In this example, we show that our scheme work on the randomly chooses orthonor-

mal bases that satisfies the condition (4.2). Assume that PKG first chooses the

bases as

D = {(1, 2, 3, 4, 5, 6), (1, 0, 2, 3, 5, 2), (2, 3, 0, 5, 2, 7),

(2, 3, 4, 0, 2, 1), (1, 0, 3, 4, 0, 1), (2, 3, 1, 7, 0, 0)}

We also check that D is linearly independent by using the method define in 2.5.21.

Now we calculate the orthonormal basis D∗ that fulfil the condition (4.2).

Example 5.1.2 Let D = {(1, 2, 3, 4, 5, 6), (1, 0, 2, 3, 5, 2), (2, 3, 0, 5, 2, 7),

(2, 3, 4, 0, 2, 1), (1, 0, 3, 4, 0, 1), (2, 3, 1, 7, 0, 0)} be the basis of Z6
29. Let

D∗ = {(d∗11, d∗12, d∗13, d∗14, d∗15, d∗16), (d∗21, d∗22, d∗23, d∗24, d∗25, d∗26), (d∗31, d∗32, d∗33, d∗34, d∗35, d∗36),

(d∗41, d
∗
42, d

∗
43, d

∗
44, d

∗
45, d

∗
46), (d

∗
51, d

∗
52, d

∗
53, d

∗
54, d

∗
55, d

∗
56), (d

∗
61, d

∗
62, d

∗
63, d

∗
64, d

∗
65, d

∗
66)}

be the orthonormal basis. By using condition (4.2), we will make the system of

linear equations by multiplying the first component of D∗ by the components of

D. We will choose the random r = 3 in this case.Therefore, first system of linear
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equations are: 

1d∗11 + 2d∗12 + 3d∗13 + 4d∗14 + 5d∗15 + 6d16 = 3

1d∗11 + 0d∗12 + 2d∗13 + 3d∗14 + 5d∗15 + 2d16 = 0

2d∗11 + 3d∗12 + 0d∗13 + 5d∗14 + 2d∗15 + 7d16 = 0

2d∗11 + 3d∗12 + 4d∗13 + 0d∗14 + 2d∗15 + 1d16 = 0

1d∗11 + 0d∗12 + 3d∗13 + 4d∗14 + 0d∗15 + 1d16 = 0

2d∗11 + 3d∗12 + 1d∗13 + 7d∗14 + 0d∗15 + 0d16 = 0

(5.1)

Solving them by transforming into the augmented matrix and solve by reduced

echelon form.



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

1 0 2 3 5 2 | 0

2 3 0 5 2 7 | 0

2 3 4 0 2 1 | 0

1 0 3 4 0 1 | 0

2 3 1 7 0 0 | 0


Using the following row operation: (R1+(−1)R2), (R1+(−2)R3), (R1+(−2)R4), (R1+

(−1)R5), (R1 + (−2)R6) and reduce their result in mod 29. We get



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 27 28 28 0 25 | 26

0 28 23 26 21 24 | 23

0 28 27 21 21 18 | 23

0 27 0 0 24 24 | 26

0 28 24 28 19 17 | 23


mod 29
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Now multiplying second row by inverse of 27 by using extended euclidean inverse

see Section 2.5.14 i.e (27)−1 = 14 mod 29.



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 28 23 26 21 24 | 23

0 28 27 21 21 18 | 23

0 27 0 0 24 24 | 26

0 28 24 28 19 17 | 23


mod 29

Now use the following row operations that is (28R2 −R3), (28R2 −R4), (27R2 −

R5), (28R2 −R6).



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 9 12 21 26 | 10

0 0 13 7 21 20 | 10

0 0 1 1 24 28 | 0

0 0 10 14 19 19 | 10


mod 29

Now multiplying third row by inverse of 9 by using extended euclidean inverse see

Section 2.5.14 i.e (9)−1 = 13 mod 29.



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 13 7 21 20 | 10

0 0 1 1 24 28 | 0

0 0 10 14 19 19 | 10


mod 29
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Using the following row operations: (13R3 −R4), (R3 −R5), (10R3 −R6)

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 0 20 19 24 | 27

0 0 0 10 17 20 | 14

0 0 0 9 14 26 | 14


mod 29

Now multiplying 4th row by inverse of 20 by using extended euclidean inverse see

Section 2.5.14 i.e (20)−1 = 16 mod 29.



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 0 1 14 7 | 26

0 0 0 10 17 20 | 14

0 0 0 9 14 26 | 14


mod 29

Using the following row operation: (10R4 −R5), (9R4 −R6)

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 0 1 14 7 | 26

0 0 0 0 7 21 | 14

0 0 0 0 25 8 | 17


mod 29
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Now multiplying 5th row by inverse of 7 by using extended euclidean inverse see

Section 2.5.14 i.e (9)−1 = 13 mod 29.



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 0 1 14 7 | 26

0 0 0 0 1 3 | 2

0 0 0 0 1 2 | 3


mod 29

Apply the following operation (25R5−R6). After this 6th row becomes [0 0 0 0 0 9|4]

multiplying resulting 6th row by inverse of 9 using extended euclidean inverse

2.5.14 i.e. −519
4091 

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 5 6 | 3

0 1 15 15 0 2 | 16

0 0 1 11 12 19 | 14

0 0 0 1 14 7 | 26

0 0 0 0 1 3 | 2

0 0 0 0 0 1 | 23


mod 29

Use the following row operations 3R6−R5, 7R6−R4, 19R6−R3, 2R6−R2, 6R6−R1

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



28 27 26 25 24 0 | 19

0 28 14 14 0 0 | 1

0 0 28 18 17 0 | 17

0 0 0 28 15 0 | 19

0 0 0 0 28 0 | 9

0 0 0 0 0 1 | 23


mod 29
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Multiplying 5th row by inverse of 28 i.e (28)−1 = 28 mod 29



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



28 27 26 25 24 0 | 19

0 28 14 14 0 0 | 1

0 0 28 18 17 0 | 17

0 0 0 28 15 0 | 19

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Using the row operation: 15R5 −R4, 17R5 −R3, 24R5 −R1

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 3 4 0 0 | 26

0 28 14 14 0 0 | 1

0 0 1 11 0 0 | 4

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Using the following row operations 11R4 −R3, 14R4 −R2, 4R4 −R1.

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



28 27 26 0 0 0 | 25

0 1 15 0 0 0 | 18

0 0 28 0 0 0 | 13

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29
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Multiplying third row by inverse of 28 i.e (28)−1 = 28 mod 29



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



28 27 26 0 0 0 | 25

0 1 15 0 0 0 | 18

0 0 1 0 0 0 | 16

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Using the following row operations 26R3 −R1, 15R3 −R2.

d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 0 0 0 0 | 14

0 28 0 0 0 0 | 19

0 0 1 0 0 0 | 16

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Multiplying second row by inverse of 28 i.e (28)−1 = 28 mod 29



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 2 0 0 0 0 | 14

0 1 0 0 0 0 | 10

0 0 1 0 0 0 | 16

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Now, use the following operation 2R2−R1. After this 1st row becomes [28 0 0 0 0 0|6]

multiplying resulting 1st row by inverse of 28 using extended euclidean inverse
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2.5.14 i.e. (28)−1 = 28 mod 29. Therefore,



d∗11

d∗12

d∗13

d∗14

d∗15

d∗16


=



1 0 0 0 0 0 | 23

0 1 0 0 0 0 | 10

0 0 1 0 0 0 | 16

0 0 0 1 0 0 | 20

0 0 0 0 1 0 | 20

0 0 0 0 0 1 | 23


mod 29

Therefore, the values of (d∗11, d
∗
12, d

∗
13, d

∗
14, d

∗
15, d

∗
16) are:

d∗11 = 23 mod 29 d∗12 = 10 mod 29

d∗13 = 16 mod 29 d∗14 = 20 mod 29

d∗15 = 20 mod 29 d∗16 = 23 mod 29

To find the second component of D∗, we will multiply the second component of

orthonormal basis D∗ with all components of D one by one and making the second

system of linear equations.

1d∗21 + 2d∗22 + 3d∗23 + 4d∗24 + 5d∗25 + 6d26 = 0

1d∗21 + 0d∗22 + 2d∗23 + 3d∗24 + 5d∗25 + 2d26 = 3

2d∗21 + 3d∗22 + 0d∗23 + 5d∗24 + 2d∗25 + 7d26 = 0

2d∗21 + 3d∗22 + 4d∗23 + 0d∗24 + 2d∗25 + 1d26 = 0

1d∗21 + 0d∗22 + 3d∗23 + 4d∗24 + 0d∗25 + 1d26 = 0

2d∗21 + 3d∗22 + 1d∗23 + 7d∗24 + 0d∗25 + 0d26 = 0

(5.2)
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Similarly, by using the above procedure we can solve the following system (5.2).

and their calculated values are,

d∗21 = 21 mod 29

d∗22 = 9 mod 29

d∗23 = 18 mod 29

d∗24 = 0 mod 29

d∗25 = 25 mod 29

d∗26 = 12 mod 29

To find the third component of D∗, we will multiply the third component of

orthonormal basis D∗ with all components of D one by one and making the third

system of linear equations.

1d∗31 + 2d∗32 + 3d∗33 + 4d∗34 + 5d∗35 + 6d36 = 0

1d∗31 + 0d∗32 + 2d∗33 + 3d∗34 + 5d∗35 + 2d36 = 0

2d∗31 + 3d∗32 + 0d∗33 + 5d∗34 + 2d∗35 + 7d36 = 3

2d∗31 + 3d∗32 + 4d∗33 + 0d∗34 + 2d∗35 + 1d36 = 0

1d∗31 + 0d∗32 + 3d∗33 + 4d∗34 + 0d∗35 + 1d36 = 0

2d∗31 + 3d∗32 + 1d∗33 + 7d∗34 + 0d∗35 + 0d36 = 0

(5.3)

Similarly, the values of following equation (5.3) are,

d∗31 = 11 mod 29

d∗32 = 26 mod 29

d∗33 = 12 mod 29

d∗34 = 13 mod 29

d∗35 = 19 mod 29

d∗36 = 17 mod 29



Implementation of IBBE using weil pairing 102

To find the forth component of D∗, we will multiply the fourth component of

orthonormal basis D∗ with all components of D one by one and making the fourth

system of linear equations.

1d∗41 + 2d∗42 + 3d∗43 + 4d∗44 + 5d∗45 + 6d46 = 0

1d∗41 + 0d∗42 + 2d∗43 + 3d∗44 + 5d∗45 + 2d46 = 0

2d∗41 + 3d∗42 + 0d∗43 + 5d∗44 + 2d∗45 + 7d46 = 0

2d∗41 + 3d∗42 + 4d∗43 + 0d∗44 + 2d∗45 + 1d46 = 3

1d∗41 + 0d∗42 + 3d∗43 + 4d∗44 + 0d∗45 + 1d46 = 0

2d∗41 + 3d∗42 + 1d∗43 + 7d∗44 + 0d∗45 + 0d46 = 0

(5.4)

Similarly, the values of following equation (5.4) are,

d∗41 = 24 mod 29

d∗42 = 28 mod 29

d∗43 = 19 mod 29

d∗44 = 24 mod 29

d∗45 = 15 mod 29

d∗46 = 26 mod 29

To find the fifth component of D∗, we will multiply the fifth component of or-

thonormal basis D∗ with all components of D one by one and making the fifth

system of linear equations.

1d∗51 + 2d∗52 + 3d∗53 + 4d∗54 + 5d∗55 + 6d56 = 0

1d∗51 + 0d∗52 + 2d∗53 + 3d∗54 + 5d∗55 + 2d56 = 0

2d∗51 + 3d∗52 + 0d∗53 + 5d∗54 + 2d∗55 + 7d56 = 0

2d∗51 + 3d∗52 + 4d∗53 + 0d∗54 + 2d∗55 + 1d56 = 0

1d∗51 + 0d∗52 + 3d∗53 + 4d∗54 + 0d∗55 + 1d56 = 3

2d∗51 + 3d∗52 + 1d∗53 + 7d∗54 + 0d∗55 + 0d56 = 0

(5.5)
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Similarly, the values of following equation (5.5) are,

d∗51 = 9 mod 29

d∗52 = 2 mod 29

d∗53 = 26 mod 29

d∗54 = 26 mod 29

d∗55 = 1 mod 29

d∗56 = 15 mod 29

To find the last component of D∗, we will multiply the sixth component of or-

thonormal basis D∗ with all components of D one by one and making the following

system of linear equations.

1d∗61 + 2d∗62 + 3d∗63 + 4d∗64 + 5d∗65 + 6d66 = 0

1d∗61 + 0d∗62 + 2d∗63 + 3d∗64 + 5d∗65 + 2d66 = 0

2d∗61 + 3d∗62 + 0d∗63 + 5d∗64 + 2d∗65 + 7d66 = 0

2d∗61 + 3d∗62 + 4d∗63 + 0d∗64 + 2d∗65 + 1d66 = 0

1d∗61 + 0d∗62 + 3d∗63 + 4d∗64 + 0d∗65 + 1d66 = 0

2d∗61 + 3d∗62 + 1d∗63 + 7d∗64 + 0d∗65 + 0d66 = 3

(5.6)

Similarly, the values of following equation (5.6) are,

d∗61 = 27 mod 29

d∗62 = 8 mod 29

d∗63 = 26 mod 29

d∗64 = 27 mod 29

d∗65 = 1 mod 29

d∗66 = 19 mod 29
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Therefore,

D∗ = {(23, 10, 16, 20, 20, 23), (21, 9, 18, 0, 25, 12), (11, 26, 12, 13, 19, 17),

(24, 28, 19, 24, 15, 26), (9, 2, 26, 26, 1, 15), (27, 8, 26, 27, 1, 19)} (5.7)

Verification of orthonormal condition (4.2)

Now, we will verify the orthonormal condition (4.2), as we choose the random

r = 3 so the dot product of bases are as follow:

d1 · d∗1 = (1, 2, 3, 4, 5, 6) · (23, 10, 16, 20, 20, 23)

= (1 · 23 + 2 · 10 + 3 · 16 + 4 · 20 + 5 · 20 + 6 · 23) = 409 mod 29 = 3

d1 · d∗2 = (1, 2, 3, 4, 5, 6) · (21, 9, 18, 0, 25, 12)

= (1 · 21 + 2 · 9 + 3 · 18 + 4 · 0 + 5 · 25 + 6 · 12) = 290 mod 29 = 0

d1 · d∗3 = (1, 2, 3, 4, 5, 6) · (11, 26, 12, 13, 19, 17)

= (1 · 11 + 2 · 26 + 3 · 12 + 4 · 13 + 5 · 19 + 6 · 17) = 348 mod 29 = 0

d1 · d∗4 = (1, 2, 3, 4, 5, 6) · (24, 28, 19, 24, 15, 26)

= (1 · 24 + 2 · 28 + 3 · 19 + 4 · 24 + 5 · 15 + 6 · 26) = 464 mod 29 = 0

d1 · d∗5 = (1, 2, 3, 4, 5, 6) · (9, 2, 26, 26, 1, 15)

= (1 · 9 + 2 · 2 + 3 · 26 + 4 · 26 + 5 · 1 + 6 · 15) = 290 mod 29 = 0

d1 · d∗6 = (1, 2, 3, 4, 5, 6) · (27, 8, 26, 27, 1, 19)

= (1 · 27 + 2 · 8 + 3 · 26 + 4 · 27 + 5 · 1 + 6 · 19) = 348 mod 29 = 0
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d2 · d∗1 = (1, 0, 2, 3, 5, 2) · (23, 10, 16, 20, 20, 23)

= (1 · 23 + 0 · 10 + 2 · 16 + 3 · 20 + 5 · 20 + 2 · 23) = 261 mod 29 = 0

d2 · d∗2 = (1, 0, 2, 3, 5, 2) · (21, 9, 18, 0, 25, 12)

= (1 · 21 + 0 · 9 + 2 · 18 + 3 · 0 + 5 · 25 + 2 · 12) = 206 mod 29 = 3

d2 · d∗3 = (1, 0, 2, 3, 5, 2) · (11, 26, 12, 13, 19, 17)

= (1 · 11 + 0 · 26 + 2 · 12 + 3 · 13 + 5 · 19 + 2 · 17) = 203 mod 29 = 0

d2 · d∗4 = (1, 0, 2, 3, 5, 2) · (24, 28, 19, 24, 15, 26)

= (1 · 24 + 0 · 28 + 2 · 19 + 3 · 24 + 5 · 15 + 2 · 26) = 261 mod 29 = 0

d2 · d∗5 = (1, 0, 2, 3, 5, 2) · (9, 2, 26, 26, 1, 15)

= (1 · 9 + 0 · 2 + 2 · 26 + 3 · 26 + 5 · 1 + 2 · 15) = 174 mod 29 = 0

d2 · d∗6 = (1, 0, 2, 3, 5, 2) · (27, 8, 26, 27, 1, 19)

= (1 · 27 + 0 · 8 + 2 · 26 + 3 · 27 + 5 · 1 + 2 · 19) = 203 mod 29 = 0

d3 · d∗1 = (2, 3, 0, 5, 2, 7) · (23, 10, 16, 20, 20, 23)

= (2 · 23 + 3 · 10 + 0 · 16 + 5 · 20 + 2 · 20 + 7 · 23) = 377 mod 29 = 0

d3 · d∗2 = (2, 3, 0, 5, 2, 7) · (21, 9, 18, 0, 25, 12)

= (2 · 21 + 3 · 9 + 0 · 18 + 5 · 0 + 2 · 25 + 7 · 12) = 203 mod 29 = 0

d3 · d∗3 = (2, 3, 0, 5, 2, 7) · (11, 26, 12, 13, 19, 17)

= (2 · 11 + 3 · 26 + 0 · 12 + 5 · 13 + 2 · 19 + 7 · 17) = 322 mod 29 = 3

d3 · d∗4 = (2, 3, 0, 5, 2, 7) · (24, 28, 19, 24, 15, 26)

= (2 · 24 + 3 · 28 + 0 · 19 + 5 · 24 + 2 · 15 + 7 · 26) = 464 mod 29 = 0

d3 · d∗5 = (2, 3, 0, 5, 2, 7) · (9, 2, 26, 26, 1, 15)

= (2 · 9 + 3 · 2 + 0 · 26 + 5 · 26 + 2 · 1 + 7 · 15) = 261 mod 29 = 0

d3 · d∗6 = (2, 3, 0, 5, 2, 7) · (27, 8, 26, 27, 1, 19)

= (2 · 27 + 3 · 8 + 0 · 26 + 5 · 27 + 2 · 1 + 7 · 19) = 348 mod 29 = 0



Implementation of IBBE using weil pairing 106

d4 · d∗1 = (2, 3, 4, 0, 2, 1) · (23, 10, 16, 20, 20, 23)

= (2 · 23 + 3 · 10 + 4 · 16 + 0 · 20 + 2 · 20 + 1 · 23) = 203 mod 29 = 0

d4 · d∗2 = (2, 3, 4, 0, 2, 1) · (21, 9, 18, 0, 25, 12)

= (2 · 21 + 3 · 9 + 4 · 18 + 0 · 0 + 2 · 25 + 1 · 12) = 203 mod 29 = 0

d4 · d∗3 = (2, 3, 4, 0, 2, 1) · (11, 26, 12, 13, 19, 17)

= (2 · 11 + 3 · 26 + 4 · 12 + 0 · 13 + 2 · 19 + 1 · 17) = 203 mod 29 = 0

d4 · d∗4 = (2, 3, 4, 0, 2, 1) · (24, 28, 19, 24, 15, 26)

= (2 · 24 + 3 · 28 + 4 · 19 + 0 · 24 + 2 · 15 + 1 · 26) = 264 mod 29 = 3

d4 · d∗5 = (2, 3, 4, 0, 2, 1) · (9, 2, 26, 26, 1, 15)

= (2 · 9 + 3 · 2 + 4 · 26 + 0 · 26 + 2 · 1 + 1 · 15) = 145 mod 29 = 0

d4 · d∗6 = (2, 3, 4, 0, 2, 1) · (27, 8, 26, 27, 1, 19)

= (2 · 27 + 3 · 8 + 4 · 26 + 0 · 27 + 2 · 1 + 1 · 19) = 203 mod 29 = 0

d5 · d∗1 = (1, 0, 3, 4, 0, 1) · (23, 10, 16, 20, 20, 23)

= (1 · 23 + 0 · 10 + 3 · 16 + 4 · 20 + 0 · 20 + 1 · 23) = 174 mod 29 = 0

d5 · d∗2 = (1, 0, 3, 4, 0, 1) · (21, 9, 18, 0, 25, 12)

= (1 · 21 + 0 · 9 + 3 · 18 + 4 · 0 + 0 · 25 + 1 · 12) = 87 mod 29 = 0

d5 · d∗3 = (1, 0, 3, 4, 0, 1) · (11, 26, 12, 13, 19, 17)

= (1 · 11 + 0 · 26 + 3 · 12 + 4 · 13 + 0 · 19 + 1 · 17) = 116 mod 29 = 0

d5 · d∗4 = (1, 0, 3, 4, 0, 1) · (24, 28, 19, 24, 15, 26)

= (1 · 24 + 0 · 28 + 3 · 19 + 4 · 24 + 0 · 15 + 1 · 26) = 203 mod 29 = 0

d5 · d∗5 = (1, 0, 3, 4, 0, 1) · (9, 2, 26, 26, 1, 15)

= (1 · 9 + 0 · 2 + 3 · 26 + 4 · 26 + 0 · 1 + 1 · 15) = 206 mod 29 = 3

d5 · d∗6 = (1, 0, 3, 4, 0, 1) · (27, 8, 26, 27, 1, 19)

= (1 · 27 + 0 · 8 + 3 · 26 + 4 · 27 + 0 · 1 + 1 · 19) = 232 mod 29 = 0
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d6 · d∗1 = (2, 3, 1, 7, 0, 0) · (23, 10, 16, 20, 20, 23)

= (2 · 23 + 3 · 10 + 1 · 16 + 7 · 20 + 0 · 20 + 0 · 23) = 232 mod 29 = 0

d6 · d∗2 = (2, 3, 1, 7, 0, 0) · (21, 9, 18, 0, 25, 12)

= (2 · 21 + 3 · 9 + 1 · 18 + 7 · 0 + 0 · 25 + 0 · 12) = 87 mod 29 = 0

d6 · d∗3 = (2, 3, 1, 7, 0, 0) · (11, 26, 12, 13, 19, 17)

= (2 · 11 + 3 · 26 + 1 · 12 + 7 · 13 + 0 · 19 + 0 · 17) = 203 mod 29 = 0

d6 · d∗4 = (2, 3, 1, 7, 0, 0) · (24, 28, 19, 24, 15, 26)

= (2 · 24 + 3 · 28 + 1 · 19 + 7 · 24 + 0 · 15 + 0 · 26) = 319 mod 29 = 0

d6 · d∗5 = (2, 3, 1, 7, 0, 0) · (9, 2, 26, 26, 1, 15)

= (2 · 9 + 3 · 2 + 1 · 26 + 7 · 26 + 0 · 1 + 0 · 15) = 232 mod 29 = 0

d6 · d∗6 = (2, 3, 1, 7, 0, 0) · (27, 8, 26, 27, 1, 19)

= (2 · 27 + 3 · 8 + 1 · 26 + 7 · 27 + 0 · 1 + 0 · 19) = 293 mod 29 = 3

From above calculations, it is verified that (5.7) are the orthonormal bases.

Now, by using the orthonormal bases, we will calculate message encryption and

decryption by using the IBBE scheme defined in Chapter 4.

1. Setup: Setup algorithm calculate the master key of IBBE system. For that

purpose we take m = 6 denotes the number of receivers, now we assume that

PKG first randomly chooses orthonormal bases of Z6
29 that are calculated

above

D = {(1, 2, 3, 4, 5, 6), (1, 0, 2, 3, 5, 2), (2, 3, 0, 5, 2, 7),

(2, 3, 4, 0, 2, 1), (1, 0, 3, 4, 0, 1), (2, 3, 1, 7, 0, 0)}

D∗ = {(23, 10, 16, 20, 20, 23), (21, 9, 18, 0, 25, 12), (11, 26, 12, 13, 19, 17),

(24, 28, 19, 24, 15, 26), (9, 2, 26, 26, 1, 15), (27, 8, 26, 27, 1, 19)} The master key

is defined as

K = {gαθd∗1 , gθd∗1 , gθd∗2 , gσd∗3 , gσd∗4}



Implementation of IBBE using weil pairing 108

PKG chooses randomly α = 3, θ = 7, σ = 9 ∈ Z29 . First we will calculate

the public parameters that are defined as

PP = {G1,G2, g, p, φ(g, g)αθd1d
∗
1 , gd1 , gd2 , gd3 , gd4}

In this example pubic parameter are

PP = {G1 = E29(0, 1),G2 = F292 , g = (8, 7), p = 29,

φ(g, g)αθd1d
∗
1 = φ((8, 7), (8, 7))3×7(1,2,3,4,5,6)(23,10,16,20,20,23) = 12β + 3,

gd1 = (8, 7)(1,2,3,4,5,6) = {((8, 7), (4, 23), (4, 6), (8, 22), (8, 7), (8, 7)), }

gd2 = g(1,0,2,3,5,2) = {(8, 7), (8, 7), (4, 23), (4, 6), (8, 7), (4, 23)}

gd3 = g(2,3,0,5,2,7) = {(4, 23), (4, 6), (8, 7), (8, 7), (4, 23), (4, 23)},

gd4 = g(2,3,4,0,2,1) = {(4, 23), (4, 6), (8, 22), (8, 7), (4, 23), (8, 7)}

So calculation for master key is as follow:

K = {(8, 7)(3)(7)(23,10,16,20,20,23), (8, 7)(7)(23,20,16,20,20,23), (8, 7)(7)(21,9,18,0,25,12)

, (8, 7)(9)(11,26,12,13,19,17), (8, 7)(9)(24,28,19,24,15,26)}

K = {(8, 7)(21)(23,10,16,20,20,23), (8, 7)(7)(23,20,16,20,20,23), (8, 7)(7)(21,9,18,0,25,12)

, (8, 7)(9)(11,26,12,13,19,17), (8, 7)(9)(24,28,19,24,15,26)}

K = {(8, 7)(483,210,336,420,420,483), (8, 7)(161,70,112,140,140,161)

, (8, 7)(147,63,126,0,175,84), (8, 7)(99,234,108,117,171,153), (8, 7)(216,252,171,216,135,234)}

As we work on elliptic curve so we write the above equation as:

K = {(483(8, 7), 210(8, 7), 336(8, 7), 420(8, 7), 420(8, 7), 483(8, 7)), (161(8, 7),

70(8, 7), 112(8, 7), 140(8, 7), 140(8, 7), 161(8, 7)), (147(8, 7), 63(8, 7), 126(8, 7)

0(8, 7), 175(8, 7), 84(8, 7)), (99(8, 7), 234(8, 7), 108(8, 7), 117(8, 7), 171(8, 7),

153(8, 7)), (216(8, 7), 252(8, 7), 171(8, 7), 216(8, 7), 135(8, 7), 234(8, 7))}
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Using the scalar multiplication of elliptic curve, calculating them using Ap-

CoCoA program see Appendix A. The above equation can be rewritten as.

K = {((4, 6),O, (8, 7),O,O, (4, 6)), ((8, 7),O, (4, 23),O,O, (8, 7)),

((4, 23), (4, 6), (8, 7),O,O, (8, 22), ((8, 22), (8, 22), (4, 6), (4, 23), (8, 7), (4, 6))

, ((8, 7), (4, 23), (8, 7), (8, 7),O, (8, 22))}

2. Extract: Now the PKG calculates the private key of the corresponding

identity. K1 is defined as

K1 = gαθd
∗
1+r

i
1IDiθd

∗
1−ri1θd∗2+ri2IDiσd

∗
3−ri2σd∗4

Let set of Identities be Ω = {2, 5, 7, 3, 14, 13} ∈ Z29 and choose random

integers

r11, r
2
1, r

3
1, r

4
1, r

5
1r

6
1 = 21, 22, 23, 24, 25, 26 ∈ Z∗29

= (2, 4, 8, 16, 32, 64) mod 29

= (2, 4, 8, 16, 3, 6) mod 29

r12, r
2
2, r

3
2, r

4
2, r

5
2, r

6
2 = 31, 32, 33, 34, 35, 36 ∈ Z∗29

= (3, 9, 27, 81, 243, 729) mod 29

= (3, 9, 27, 23, 11, 4) mod 29

Pick up the second identity ID2 = 5 ∈ Ω where i = 2.Therefore, calculation

for K1 is as follow:

K1 = (8, 7)(3)(7)(23,10,16,20,20,23)+(4)(5)(7)(23,10,16,20,20,23)−(4)(7)(21,9,18,0,25,12)

.(8, 7)(9)(5)(9)(11,26,12,13,19,17)−(9)(9)(24,28,19,24,15,26)
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Multiplying the exponents, we get

K1 = (8, 7)(483,210,336,420,420,483)+(3220,1400,2240,2800,2800,3220)+(−588,−252,−504,0,−700,−336)

(8, 7)(4455,10530,4860,5265,7695,6885)+(−1944,−2268,−1539,−1944,−1215,−2106) mod 29

As base is same then by using the law of exponent xi.xj = xi+j and adding

them component wise, and reducing the answer in mod 29 therefore we get

K1 = (8, 7)(5626,9620,5393,6541,9000,8146) mod 29

Using Scalar multiplication of elliptic curve the above equation can be rewrit-

ten as.

K1 = 5626(8, 7), 9620(8, 7), 5393(8, 7), 6541(8, 7), 9000(8, 7), 8146(8, 7)

Now using scalar multiplication of elliptic curve using ApCoCoA tool see

Appendix A, we get

K1 = {(8, 7),O, (4, 6), (8, 7),O, (8, 7)}

K2 is defined as

K2 =



g(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)(ID1+ID2+...,ID6)θd∗1 .

gr
i
1(ID1+ID2+···+IDi−1+IDi+1+...ID6)θd∗1 .

g−(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+r61)θd∗2 .

g(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)(ID1+ID2+...,ID6)σd∗3 .

gr
i
2(ID1+ID2+···+IDi−1+IDi+1+···+ID6)σd∗3 .

g−(r
1
2+r

2
2+···+r

i−1
2 +ri+1

2 +···+r62)σd∗4
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The calculation for K2 given below, we assume that i = 2

K2 =



(8, 7)(2+8+16+3+6)(2+5+7+3+14+13)(7)(23,10,16,20,20,23) Skiping the r21 = 4

.(8, 7)(4)(2+7+3+14+13)(7)(23,10,16,20,20,23) Skiping the ID2 = 5

.(8, 7)−(2+8+16+3+6)(7)(21,9,18,0,25,12) Skiping the r21 = 4

.(8, 7)(3+27+23+11+4)(2+5+7+3+14+13)(9)(11,26,12,13,19,17) Skiping the r22 = 9

.(8, 7)(9)(2+7+3+14+13)(9)(11,26,12,13,19,17) Skiping the ID2 = 5

.(8, 7)−(3+27+23+11+4)(9)(24,28,19,24,15,26) Skiping the r22 = 9

Solving the exponents

K2 =


(8, 7)(247940,107800,172480,215600,215600,247940).(8, 7)(25116,10920,17472,21840,21840,25116)

.(8, 7)(−5145,−2205,−4410,0,−6125,−2940).(8, 7)(296208,700128,323136,350064,511632,457776)

.(8, 7)(34749,82134,37908,41067,60021,53703).(8, 7)(−14688,−17136,−11628,−14688,−9180,−15912)

As the base is same which is (8, 7) then using the law of exponent that is

stated as xi.xj = xi+j we add them component wise.

K2 = (8, 7)(584180,881641,534958,613883,793788,765683) mod 29

By using the scalar multiplication of elliptic curve

K2 = {584180(8, 7), 881641(8, 7), 534958(8, 7), 613883(8, 7), 793788(8, 7), 765683(8, 7)}

K2 = {(8, 22), (4, 23), (4, 6), (8, 22), (8, 22), (8, 22)}

Similarly, by using the above procedure one can calculate private keys for

all other identities Ω = {5, 7, 3, 14, 13}

3. Encrypt: C1 is defined as

C1 = M.φ(g, g)αθs1d1·d
∗
1



Implementation of IBBE using weil pairing 112

Choose randomly s1 = 21, s2 = 23 ∈ Z∗29 and take message M = 9.

For calculation of C1 we need to calculate the bilinear mapping φ. As we

use the modified weil pairing and choose point (8, 7) of order 5. Therefore,

we calculate φ̂n(A,A) = φ̂5((8, 7), (8, 7)). Then putting the values in (4.9),

we get.

C1 = 9.φ̂5((8, 7), (8, 7))(3)(7)(21)(1,2,3,4,5,6)·(23,10,16,20,20,23)

Using ApCoCoA program see Appendix B the modified weil pairing

φ̂5((8, 7), (8, 7)) = (15β + 10)

C1 = 9.(15β + 10)(3)(7)(21)(1,2,3,4,5,6)·(23,10,16,20,20,23)

The dot product d1 · d∗1 = 3 mod 29, then multiplying the exponents in

mod 29 we get

C1 = 9.(15β + 10)(3)(7)(21)(3)

C1 = (9.(15β + 10)1323 mod β2 + β + 1) mod 29

C1 = 9.(12β + 3) mod 29

C1 = 108b+ 27 mod 29

C1 = 21β + 27 mod 29

C2 is define as

C2 = gs1d1+s1(ID1,ID2,...,ID6)d2+s2d3+s2(ID1,ID2,...,ID6)d4

Now we have to calculate C2 by using the equation (4.10). Putting values in

(4.10) we get

C2 = (8, 7)21(1,2,3,4,5,6)+(21)(2+5+7+3+14+13)(1,0,2,3,5,2).

(8, 7)(23)(2,3,0,5,2,7)+(23)(2+5+7+3+14+13)(2,3,4,0,2,1)
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Solving the exponents and adding them component wise.

C2 = (8, 7)(21,42,63,84,105,126)+(924,0,1848,2772,4620,1848)·

(8, 7)(46,69,0,115,46,161)+(2024,3036,4048,0,2024,1012)

C2 = (8, 7)(3015,3147,5959,2971,6795,3147)

By using scalar multiplication of elliptic curve

C2 = (3015(8, 7), 3147(8, 7), 5959(8, 7), 2971(8, 7), 6795(8, 7), 3147(8, 7)) mod 29

C2 = {O, (4, 23), (8, 22), (8, 7),O, (4, 23)}

4. Decrypt: Message decryption is define as M = C1/φ6(K1K2, C2). For de-

cryption, we use both decryption keys and ciphertexts that is calculated as

below.

K1 = {(8, 7), (8, 7), (4, 6), (8, 7),O, (8, 7)}

K2 = {(8, 22), (4, 23), (8, 22), (8, 7), (8, 7),O}

C1 = 21β + 27

C2 = {O, (4, 23), (8, 22), (8, 7),O, (4, 23)}

From the definition of message decryption (4.11). First we calculate the

denominator of equation (4.11) for that purpose we need to calculate the

product of pairing that is denoted by φm = φ6 between both decryption keys

and second ciphertext C2 as defined as φ6(K1K2, C2).

As a first step we calculate the product of decryption keys but as we are

using elliptic curves that is group of addition then we add the both keys

component wise using the ApCoCoA (see Appendix A for point addition).

The result of addition is given below.

K1 +K2 = {(8, 7), (8, 7), (8, 7), (8, 22), (4, 6), (8, 22)}
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We use the modified weil pairing between the keys and ciphertext which is

denoted by φ̂m = φ̂6. pairing component wise

φ̂m(K1 +K2, C2) =

φ̂((8, 7),O).φ̂((8, 7), (4, 23)).φ̂((8, 7), (8, 22)).

φ̂((8, 22), (8, 7)).φ̂((4, 6),O).φ̂((8, 22), (4, 23))

Applying the definition of modified weil pairing, we get

φ(K1 +K2, C2) =

φ((8, 7),O) · φ((8, 7), (4β, 23)) · φ((8, 7), (8β, 22))·

φ((8, 22), (8β, 7)) · φ((4, 6),O) · φ((8, 22), (4β, 23))

Calculate the pairing between the points and multiplying the answer by using

usual multiplication. As we work on extension field we reduced our answer

in mod β2 + β + 1, we get

φ(K1 +K2, C2) = ((1) · (17β) · (14β + 24)·

(14β + 24) · (1) · (12β + 3) mod β2 + β + 1) mod 29

φ(K1 +K2, C2) = (12β + 3)

Putting value in message, we will get

M = (21β + 27)/(12β + 3)

Using extended euclidean Algorithm, we have (17β + 20)−1 = 12β + 3

mod β2 + β + 1. So,

M = (21β + 27) · (17β + 20)

M = (357β2 + 879β + 540 mod β2 + β + 1) mod 29

M = 522β + 183 mod 29 = 9
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5.2 Security Analysis

• Discrete log problem: The discrete log problem states that if g, a ∈ G1

there exist an integer b ∈ {0, 1 . . . p−1}, where p is prime and order of group

G1

gb = a mod p

. If we have gb then it is hard to find b. Some small size of group it is easy

by using brute force attack but it is still a problem for large order group.

• Elliptic Curve Discrete log problem Given point A ∈ EF(a, b) and y ∈ Z

there exist an integer n ∈ Z such that

y = nA

if someone has information of y and A but it is still difficult to calculate the

n for the information.

In our construction Weil pairing apply the discrete log problem as if we given cal-

culated value of φ(g, g)αθd1d
∗
1 then it is difficult to calculate the exponent=αθd1d

∗
1.

Similarly, In our construction, given g, y ∈ EF(a, b) and calculate y = αθd∗1g it is

very difficult to calculate αθd∗1 by only knowing y, g.

5.3 Conclusion

In this thesis, we review the research paper of “IBBE with group of prime order”

[37] this scheme was introduced by Ming and Wang that is based on bilinear

groups. We modified this scheme replaces group of prime order with group of

points of elliptic curve. In this view setting we use weil pairing as a considerable

for bilinear mapping. for the implementation, we develop computer programs for

computation with elliptic curve using the platform of computer algebra system

ApCoCoA[1]. Using weil pairing, we give the two examples of proposed scheme

and efficiently compute the encryption and decryption of message.
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One can extend our work by changing the type of curve that is y2 = x3 +ax where

a ∈ Z so that the distortion mapping can also change and defined as φ : (x, y) =

(−x, iy) that is available in [29]. One can also use tate pairing see literature

[23, 33].
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Weil Pairing

A.1 ApCoCoA Code for Weil Pairing

This section contain the ApCoCoA code for calculation of weil pairing in finite

field Fp. It consists of ModInv, ECadd,NP, OrderP,MillerFtn, MillerCal,

Weil.

ModInv calculate the inverse of a number under the mod . It require the in-

put N,P where P is number and N is mod . This function uses the extended

euclidean inverse algorithm.

Define ModInv(N,P)

A1:=1;A2:=0;A3:=P;

B1:=0;B2:=1;B3:=N;

While B3<0 Do

B3:=B3+P;

EndWhile;

While B3<>1 Do

Q:=Div(A3,B3);

If Q=0 Then Error(" Q is 0");EndIf;

T1:=A1-Q*B1;T2:=A2-Q*B2;T3:=A3-Q*B3;

A1:=B1;A2:=B2;A3:=B3;

117
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B1:=T1;B2:=T2;B3:=T3;

If B2<0 Then B2:=B2+P; EndIf;

If B3=1 Then Return B2;EndIf;

If B3=0 Then Return("Not Invertible!"); EndIf;

EndWhile;

Return B2;

EndDefine;

Dec2Bin(D) converts the decimal number into binary. It calls in MillerFtn and

ModMillerFtn

Define Dec2Bin(D)

L:=[];Q:=1;Rem:=0;

While Q<>0 Do

Q:=Div(D,2);Rem:=Mod(D,2);

Append(L,Rem);

D:=Q;

EndWhile;

Return Reversed(L);

EndDefine;

ECadd is use to add the points on P1 and P2 on curve C mod M . It require

P1, P2, C, M where P1, P2 should be given as the list of integers x and y coor-

dinates of the points. C is list containing a and b of elliptic curve.

Define ECadd(P1,P2,C,M)

If P1="Infinity" Then Return P2; EndIf;

If P2="Infinity" Then Return P1; EndIf;

If Mod(P1[2]^2,M)<>Mod(P1[1]^3+C[1]*P1[1]+C[2],M) Then

Error("First Point is not on the Elliptic Curve");

EndIf;

If Mod(P2[2]^2,M)<>Mod(P2[1]^3+C[1]*P2[1]+C[2],M) Then

Error("Second Point is not on the Elliptic Curve");

EndIf;
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If P1[1]=P2[1] AND P1[2]=Mod(-P2[2],M)

Then Return "Infinity";

EndIf;

If P1=P2 Then

S:=Mod((3P1[1]^2+C[1])*ModInv(2P1[2],M),M);

Else

S:=Mod((P2[2]-P1[2])*ModInv(P2[1]-P1[1],M),M);

EndIf;

Y0:=P1[2]-S*P1[1];

XR:=Mod(S^2-P1[1]-P2[1],M);

YR:=Mod(-S*XR-Y0,M);

Return [XR,YR];

EndDefine;

NP calculates the scalar product of point P on curve C mod M . It require the

input N,P,C,M where N is integer P is the point. It calculate N times P.

Define NP(N,P,C,M)

S:=P;

For I:=1 To N-1 Do

S:=ECadd(S,P,C,M);

EndFor;

Return S;

EndDefine;

OrderP calculates the order of point P on curve C mod M.

Define OrderP(P,C,M)

N:=1;

P1:=P;

While P1<> "Infinity" Do

P1:=ECadd(P1,P,C,M);

N:=N+1;

PrintLn("P^",N,"= ",P1);
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EndWhile;

Return N;

EndDefine;

MillerFtn find the miller function fA,B define in section 3.2.2. In this code A=P1

and B=P2 points should be given as the list of integers x and y coordinates of the

points.

Define MillerFtn(P1,P2,C,M)

If P1="Infinity" Then Return (x - Mod(P2[1],M)); EndIf;

If P2="Infinity" Then Return (x - Mod(P2[1],M)); EndIf;

If Mod(P1[2]^2,M)<>Mod(P1[1]^3+C[1]*P1[1]+C[2],M) Then

Error("First Point is not on the Elliptic Curve");

EndIf;

If Mod(P2[2]^2,M)<>Mod(P2[1]^3+C[1]*P2[1]+C[2],M) Then

Error("Second Point is not on the Elliptic Curve");

EndIf;

If P1[1]=P2[1] AND P1[2]=Mod(-P2[2],M) Then Return (x - Mod(P1[1],M));

EndIf;

If P1=P2 Then

S := Mod((3 * P1[1]^2 + C[1]) * ModInv(2 * P1[2],M),M);

F:=(y - P1[2] - S*(x - P1[1]))/(x + P1[1] + P2[1] - Mod(S^2,M));

EndIf;

If P1<>P2 Then S:=Mod((P2[2] - P1[2]) * ModInv(P2[1] - P1[1],M),M);

F:=(y - P1[2] - S*(x - P1[1]))/(x + P1[1] + P2[1] - Mod(S^2,M));

EndIf;

PrintLn("F = ",PolyMod(F,M));

Return PolyMod(F,M);

EndDefine;

MillerCal calculate the miller function by using Miller Algorithm 3.2.3. It re-

quires the input N, P, C, M where P is point on Curve C mod M and N is order

of P.
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Define MillerCal(N,P,C,M)

F:=1;

T:=P;

K:=Reversed(Dec2Bin(N));

PrintLn("K=",K,"Len(K)",Len(K));

For I := Len(K)-1 To 1 Step -1 Do

F:=F * F * MillerFtn(T,T,C,M);

PrintLn("I = ",I, " and N = ",N);

F:=PolyMod(F,M);

PrintLn("F = ",F);

T:=NP(2,T,C,M);

PrintLn("T = ",T);

If K[I]=1 Then

PrintLn("KI = ",K[I]);

F:=F*MillerFtn(T,P,C,M);

F:=PolyMod(F,M);

PrintLn("F = ",F);

T:= ECadd(T,P,C,M);

PrintLn("T = ",T);

EndIf;

EndFor;

Return PolyMod(F,M);

EndDefine;

Finally,Weil uses the MillerCal function and evaluate the Weil pairing between

A and B se section 3.2. In this code, we take A = P , B = Q and C = S points on

Curve C mod M and N is order of P and Q.

Define Weil(N,P,Q,S,C,M);

Sinv:=[S[1],-S[2]];

PrintLn("Calculations for Point P=",P);

A:=MillerCal(N,P,C,M);

QS:=ECadd(Q,S,C,M);

If Type(A)=RATFUN Then
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Fp1:=Mod(Eval(A.Num, QS),M)*ModInv(Mod(Eval(A.Den,QS),M),M);

Fp2:=Mod(Eval(A.Num, S),M)*ModInv(Mod(Eval(A.Den,S),M),M);

WP1:=Mod(Fp1*ModInv(Fp2,M),M);

Else

Fp1:=Mod(Eval(A,QS),M); Fp2:=Mod(Eval(A, S),M);

WP1:=Mod(Fp1*ModInv(Fp2,M),M);

EndIf;

PrintLn("NumWP =",WP1);

PrintLn("Calculations for Point Q=",Q);

B:=MillerCal(N,Q,C,M);

QS2:=ECadd(P,Sinv,C,M);

If Type(B)=RATFUN Then

Fq1:=Mod(Eval(B.Num, QS2),M)*ModInv(Mod(Eval(B.Den,QS2),M),M);

Fq2:=Mod(Eval(B.Num, Sinv),M)*ModInv(Mod(Eval(B.Den,Sinv),M),M);

WP2:=Mod(Fq1*ModInv(Fq2,M),M);

Else

Fq1:=Mod(Eval(B, QS2),M); Fq2:=Mod(Eval(B, Sinv),M);

WP2:=Mod(Fq1*ModInv(Fq2,M),M);

EndIf;

PrintLn("DenWP =",WP2);

WP:=Mod(WP1*ModInv(WP2,M),M);

Return WP;

EndDefine;
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Modified Weil Pairing

B.1 ApCoCoA Code for Modified Weil Pairing

This section contain the ApCoCoA code for calculation of modified Weil pair-

ing in finite field extension Fp2 . It consists of PolyMod, PolyInvM, Mod-

EcAdd, ModNP, OrderP, ModMillerFtn, ModMillerCal, ModWeil all

function have same purpose that are define in Appendix A. But it work on finite

field extension Fp2 instead of finite field Fp. Where p is mod, in this code we take

p = M .

OrderP calculates the order of any point P on curve C mod M in extension field

Fp2 .

Define OrderP(P,C,M)

N:=1;

P1:=P;

While P1<> "Infinity" Do

P1:=ModEcAdd(P1,P,C,M);

N:=N+1;

PrintLn("P^",N,"= ",P1);

EndWhile;

Return N;
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EndDefine;

IsInEM use to check the point P lei on curve C mod M .

Define IsInEM(P,C,M)

Return PolyMod(NR(P[2]^2,[b^2+b+1]),M)=PolyMod(NR(P[1]^3+C[1]

*P[1]+C[2],[b^2+b+1]),M);

EndDefine;

PolyMod gives the polynomial F that is reduced on mod M .

Define PolyMod(F,M)

If Type(F)=RATFUN Then

If Mod(Den(LC(F.Num)),M)=0 Then

D:=Den(LC(F.Num));

D2:=D*F.Den-D*LPP(F.Den);

If D2= 0 Then Error("Zero Denominator . . .");EndIf;

F:=D*F.Num/(D2);

Return PolyMod(F,M);

EndIf;

CoefNum:=Coefficients(F.Num);CoefDen:=Coefficients(F.Den);

For I:= 1 To Len(CoefNum) Do

If Type(CoefNum[I])=RAT Then

CoefNum[I]:=Mod(CoefNum[I].Num*ModInv(CoefNum[I].Den,M),M);

Else

CoefNum[I]:=Mod(CoefNum[I],M);

EndIf;

EndFor;

For I:= 1 To Len(CoefDen) Do

If Type(CoefDen[I])=RAT Then

CoefDen[I]:=Mod(CoefDen[I].Num*ModInv(CoefDen[I].Den,M),M);

Else

CoefDen[I]:=Mod(CoefDen[I],M);

EndIf;
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EndFor;

NewNum:=ScalarProduct(CoefNum,Support(F.Num));

NewDen:=ScalarProduct(CoefDen,Support(F.Den));

If NewDen= 0 Then Error("Zero Denominator . . .");EndIf;

Return NewNum/NewDen;

EndIf;

Coef:=Coefficients(F);

For I:= 1 To Len(Coef) Do

If Type(Coef[I])=RAT Then

Coef[I]:=Mod(Coef[I].Num*ModInv(Coef[I].Den,M),M);

Else

Coef[I]:=Mod(Coef[I],M);

EndIf;

EndFor;

Return ScalarProduct(Coef,Support(F));

EndDefine;

PolyInvM calculates inverse of polynomial F on polynomial M under mod Md

using Extended Euclidean Inverse.

Define PolyInvM(F,M,Md)

F:=NR(F,[M]);

If MakeSet(Log(F))=[0] Then Return ModInv(LC(F),Md); EndIf;

A1:=1;A2:=0;A3:=PolyMod(M,Md);

B1:=0;B2:=1;B3:=PolyMod(F,Md);

While MakeSet(Log(B3))<>[0] Do

D:=DivAlg(A3,[B3]);

Q:=D.Quotients[1];

Coef:=Coefficients(Q);

For I:= 1 To Len(Coef) Do

C:=Coef[I];

Coef[I]:=Mod(C.Num*ModInv(C.Den,Md),Md);

EndFor;

Q:= ScalarProduct(Coef,Support(Q));
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If Q=0 Then Error(" Q is 0");EndIf;

T1:=PolyMod(A1-Q*B1,Md);

T2:=PolyMod(A2-Q*B2,Md);

T3:=PolyMod(A3-Q*B3,Md);

A1:=B1;A2:=B2;A3:=B3;

B1:=T1;B2:=T2;B3:=T3;

If B3=1 Then

Return PolyMod(B2,Md);

EndIf;

EndWhile;

If B3<>1 Then

Return PolyMod(NR(ModInv(LC(B3),Md)*B2,[M]),Md);

Else

Return PolyMod(B2,Md);

EndIf;

EndDefine;

ModEcAdd is use to add the points on P1 and P2 on curve C mod M . It

require P1, P2, C, M where P1, P2 should be given as the list of integers x and y

coordinates of the points. C is list containing a and b of elliptic curve. Note that

one point should be polynomial and written in form of say P1 := [bx, y]

Define ModEcAdd(P1,P2,C,M)

If P1="Infinity" Then Return P2; EndIf;

If P2="Infinity" Then Return P1; EndIf;

If PolyMod(NR(Poly(P1[2]^2),[b^2+b+1]),M)<>PolyMod(NR(Poly(P1[1]^3+

C[1]*P1[1]+C[2]),[b^2+b+1]),M) Then

Error("First Point is not on the Elliptic Curve");

EndIf;

If PolyMod(NR(Poly(P2[2]^2),[b^2+b+1]),M)<>PolyMod(NR(Poly(P2[1]^3+

C[1]*P2[1]+C[2]),[b^2+b+1]),M) Then

Error("Second Point is not on the Elliptic Curve");

EndIf;

If P1[1]=P2[1] AND PolyMod(Poly(P1[2]),M)=PolyMod(Poly(-P2[2]),M)
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Then Return "Infinity";

EndIf;

If P1=P2 Then

S := PolyMod(Poly(3 * P1[1]^2 + C[1])*PolyInvM(Poly(2 *

P1[2]),b^2+b+1,M),M);

Else

If Poly(P1[1])=Poly(P2[1]) AND Poly(P1[2])=PolyMod(Poly(-P2[2]),M)

Then Return "Infinity"; EndIf;

S:=PolyMod(Poly(P2[2] - P1[2])*PolyInvM(Poly(P2[1] -

P1[1]),b^2+b+1,M),M);

EndIf;

Y0:=P1[2]-S*P1[1];

XR:=PolyMod(NR(S^2-P1[1]-P2[1],[b^2+b+1]),M);

YR:=PolyMod(NR(-S*XR-Y0,[b^2+b+1]),M);

Return [XR,YR];

EndDefine;

ModNP calculates the scalar product of point P on curve C mod M . It require

the input N,P,C,M where N is integer P is the point. It calculate N times P.

Define ModNP(N,P,C,M)

S:=P;

For I:=1 To N-1 Do

S:=ModEcAdd(S,P,C,M);

EndFor;

Return S;

EndDefine;

ModMillerFtn find the miller function fA,B define in section 3.2.2. In this code

A=P1 and B=P2 points should be given as the list of integers x and y coordinates

of the points.

Define ModMillerFtn(P1,P2,C,M);

If P1="Infinity" Then Return PolyMod(x - Poly(P2[1]),M); EndIf;
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If P2="Infinity" Then Return PolyMod(x - Poly(P1[1]),M); EndIf;

If PolyMod(NR(Poly(P1[2]^2),[b^2+b+1]),M)<>PolyMod(NR(Poly(P1[1]^3+

C[1]*P1[1]+C[2]),[b^2+b+1]),M)

Then Error("First Point is not on the Elliptic Curve");

EndIf;

If PolyMod(NR(Poly(P2[2]^2),[b^2+b+1]),M)<>PolyMod(NR(Poly(P2[1]^3+

C[1]*P2[1]+C[2]),[b^2+b+1]),M)

Then Error("Second Point is not on the Elliptic Curve");

EndIf;

If P1[1]=P2[1] AND P1[2]=PolyMod(Poly(-P2[2]),M)

Then Return PolyMod(x - Poly(P1[1]),M);

EndIf;

If P1=P2 Then

S := PolyMod(Poly(3 * P1[1]^2 + C[1]) * PolyInvM(Poly(2 *

P1[2]),b^2+b+1,M),M);

Return (NR((y - P1[2] - S*(x - P1[1])),[b^2+b+1])/NR((x + P1[1] + P2[1]

- PolyMod(Poly(S^2),M)),[b^2+b+1]));

EndIf;

If P1<>P2 Then S:=PolyMod(Poly(P2[2] - P1[2]) * PolyInvM(Poly(P2[1] -

P1[1]),b^2+b+1,M),M);

Return (NR((y - P1[2] - S*(x - P1[1])),[b^2+b+1])/NR((x + P1[1] + P2[1]

- PolyMod(Poly(S^2),M)),[b^2+b+1]));

EndIf;

EndDefine;

ModMillerCal calculate the miller function by using Miller Algorithm 3.2.3. It

requires the input N, P, C, M where P is point on Curve C mod M and N is order

of P.

Define ModMillerCal(N,P,U,C,M)

F:=1;

T:=P;

K:=Reversed(Dec2Bin(N));
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J:=Len(K);

For I:=J-1 To 1 Step -1 Do

F:=F*F * ModMillerFtn(T,T,C,M);

F:=PolyMod(F,M);

PrintLn("F = ",F);

F:=PolyMod(Subst(F, [[x,U[1]],[y,U[2]]]),M);

T:=ModNP(2,T,C,M);

PrintLn("I = ",I, " and N = ",N);

If K[I]=1 Then

F:=F*ModMillerFtn(T,P,C,M);

F:=PolyMod(F,M);

PrintLn("F = ",F);

F:=PolyMod(Subst(F, [[x,U[1]],[y,U[2]]]),M);

T:= ModEcAdd(T,P,C,M);

EndIf;

EndFor;

Return PolyMod(F,M);

EndDefine;

Finally,ModWeil uses the ModMillerCal function and evaluate the Modified

Weil pairing between A and B se section 3.3. In this code, we take A = P , B = Q

and C = S points on Curve C mod M and N is order of P and Q.

Define ModWeil(N,P,Q,S1,C,M);

NS:=[S1[1],PolyMod(Poly(-S1[2]),M)];

If P="Infinity" Then Return PrintLn("Calculated Pairing Between

",P,"and ",Q,"= ",1); EndIf;

If Q="Infinity" Then Return PrintLn("Calculated Pairing Between

",P,"and ",Q,"= ",1); EndIf;

QS:=ModEcAdd(Q,S1,C,M);

A:=ModMillerCal(N,P,QS,C,M);

B:=ModMillerCal(N,P,S1,C,M);

PS:=ModEcAdd(P,NS,C,M);

C1:=ModMillerCal(N,Q,PS,C,M);
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D:=ModMillerCal(N,Q,NS,C,M);

WP1:=PolyMod(A*D,M);

WP2:=PolyMod(B*C1,M);

WP:=PolyMod(WP1/WP2,M);

Return PrintLn("Calculated Weil Pairing Between ",P,"and ",Q,"=

",PolyMod(NR(WP.Num*PolyInvM(WP.Den,b^2+b+1,M),[b^2+b+1]),M));

EndDefine;
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